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SDS406

sps4o6: Introduction to high performance computing

e Dayandtime?
¢ Interleaved lecture and hands-on = please always be with your laptops

e MSc mandatory course
e Elective for PhD students (Cyl and UCY)

Assessment

e Coursework

o Three homework assignments (35%)

o In-class participation in labs and small homework exercises (15%)
e Final examination (50%)

o Final assighment



Preliminaries

e Laptop computers for exercises

o Tologinto educational cluster
o Need an ssh client

o Need tolearnto use atext editor on a remote system
m e.g., VS Code, Emacs, Vim
o Gothrough lesson slides sds406.online

e "Lab"format

o Each week's lesson will include taught components and practical exercises
o For the exercises we will use C (or C++) and Python:

» C for performance-targeted exercises

= Python for post-processing (analysis and visualization of results)

e Access to the educational cluster will be provided with dedicated course accounts

o Accounts prepared for you before this lesson
o You will use these accounts during the in-class exercises, homeworks, and assignments

e | assume that:

o thisis not your first programming course
o thisis your first parallel programming course


https://code.visualstudio.com/
https://www.gnu.org/software/emacs/
https://www.vim.org/download.php
https://sds406.online/

This Lesson
Preliminaries on parallel computing

e Terminologies and definitions

e Overview of high performance computing landscape

Preparation for labs

e Logintoeducational system

e Editing source code files remotely



High-performance computing

"The use of supercomputers to solve complex computational tasks"
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High-performance computing

"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution

1940s — First computers, e.g. ENIAC

e are effectively supercomputers — expensive to buy and operate; large footprint
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High-performance computing

"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution
1940s — First computers, e.g. ENIAC

e are effectively supercomputers — expensive to buy and operate; large footprint

1970s, 80s — Dawn of personal computing, but supercomputers needed for specialized tasks,
e.g. Cray-1

e parallelism emerges: vectorization, parallel instructions
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High-performance computing

"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution
1940s — First computers, e.g. ENIAC

e are effectively supercomputers — expensive to buy and operate; large footprint

1970s, 80s — Dawn of personal computing, but supercomputers needed for specialized tasks,
e.g. Cray-1

e parallelism emerges: vectorization, parallel instructions

1990s, 2000s — Supercomputers via integration of commodity components (e.g. Beowulf
clusters)

e Parallelism as we understand it today: distributed and shared memory, message passing,
etc.

2
¥ i

. > o

@ i curaRTH o
ENEF GY
s |

Hev 'lett Pac kard
Ente rprise

AMD 21




High-performance computing

"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution

1940s — First computers, e.g. ENIAC

e are effectively supercomputers — expensive to buy and operate; large footprint

1970s, 80s — Dawn of personal computing, but supercomputers needed for specialized tasks,
e.g. Cray-1

e parallelism emerges: vectorization, parallel instructions

1990s, 2000s — Supercomputers via integration of commodity components (e.g. Beowulf
clusters)

e Parallelism as we understand it today: distributed and shared memory, message passing,
etc.

2010s onwards — Heterogeneous supercomputers

e Many sockets per node; co-processors, e.g. GPUs, potentially multiple architectures within
same system
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Supercomputing means Parallel Computing

No Dennard scaling after ~2005
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e This efficiency was typically used towards increasing frequency
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https://github.com/karlrupp/microprocessor-trend-data

Supercomputing means Parallel Computing
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No Dennard scaling after ~2005

e P ox AfVZ(P:power, A:area, f: freq., V: voltage)

e Roughly, as transistors get smaller, the power density stays constant

e This efficiency was typically used towards increasing frequency
What about Moore's law?

e Moore's law is a statement about transistor count


https://github.com/karlrupp/microprocessor-trend-data

Supercomputing means Parallel Computing
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No Dennard scaling after ~2005

e P ox AfVZ(P:power, A:area, f: freq., V: voltage)
e Roughly, as transistors get smaller, the power density stays constant
e This efficiency was typically used towards increasing frequency

What about Moore's law?

e Moore's law is a statement about transistor count
e And so far seems to be holding strong


https://github.com/karlrupp/microprocessor-trend-data

Supercomputing means Parallel Computing
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No Dennard scaling after ~2005

e P ox AfVZ(P:power, A:area, f: freq., V: voltage)
e Roughly, as transistors get smaller, the power density stays constant
e This efficiency was typically used towards increasing frequency

What about Moore's law?

e Moore's law is a statement about transistor count
e And so far seems to be holding strong

—> Efficiencies are now used to increase parallelism rather than frequency

e HPC now means more parallel hardware, rather than faster scalar hardware

e HPC primarily deals with tackling the challenges of parallelism, from all aspects (hardware,
software, algorithmic, etc.)


https://github.com/karlrupp/microprocessor-trend-data

Evolution of Supercomputing

The "Top500" list

e Ranked list of top 500 supercomputers populated twice per year
e Datashown here since 1993
e Shown is High-Performance Linpack (HPL) performance achieved

—> Shows that exponential increase has been maintained
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https://www.top500.org/

Evolution of Supercomputing

The "Top500" list

e Ranked list of top 500 supercomputers populated twice per year
e Datashown here since 1993
e Shown is High-Performance Linpack (HPL) performance achieved

—> Shows that exponential increase has been maintained

e Proliferation of accelerators
o Latest AMD accelerators are Instinct GPUs
o Intel between 2012 and 2017 includes Xeon Phi

o IBM accelerators refer to IBM Cell

—> Since 2021, more than half of performance over Top500 now from accelerated
systems
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Parallel computing as the main paradigm

High performance computing means parallel computing

e Technology trends mean parallelism is essential for advanced computing
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e Technology trends mean parallelism is essential for advanced computing
e Practitioners of computational science and engineering benefit from knowledge of concepts and challenges of parallel computing



Parallel computing as the main paradigm

High performance computing means parallel computing

e Technology trends mean parallelism is essential for advanced computing

e Practitioners of computational science and engineering benefit from knowledge of concepts and challenges of parallel computing
o Architectures and their characteristics
o Algorithms and how amenable they are to parallelisation
o Performance metrics and their significance, e.g. sustained and peak floating point performance, bandwidth, scalability

Architectures | Algorithms | Performance metrics
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Characterization of Parallel Workloads

Task vs Data Parallelism

Taxonomy of computer architectures, Flynn's Taxonomy:

Single Instruction stream, Single Data stream (SISD)
Multiple Instruction streams, Single Data stream (MISD)
Single Instruction stream, Multiple Data streams (SIMD)
Multiple Instruction streams, Multiple Data streams (MIMD)



Characterization of Parallel Workloads

Task vs Data Parallelism

Taxonomy of computer architectures, Flynn's Taxonomy:

¢ Single Instruction stream, Single Data stream (SISD)

e Multiple Instruction streams, Single Data stream (MISD)

¢ Single Instruction stream, Multiple Data streams (SIMD)

e Multiple Instruction streams, Multiple Data streams (MIMD)

Parallel computing

e Most computing devices have underlying SIMD architecture units: GPUs, CPUs, etc.

e Most supercomputers can be considered MIMD architectures: multiple interconnected computing devices that can issue the same or different instructions on
multiple data



Shared vs Distributed memory paradigm

Shared memory Distributed memory
e Multiple processes share common memory (common memory address e Processes have distinct memory domains (different memory address
space) space)
e E.g. multi-core CPU, multi-socket node, GPU threads, etc. e E.g. multiple nodes within a cluster, multiple GPUs within a node
e Programming models: OpenMP, pthreads, MPI, CUDA e Programming models: MPI
Node Node
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Shared vs Distributed memory paradigm

Shared memory Distributed memory
e Multiple processes share common memory (common memory address e Processes have distinct memory domains (different memory address
space) space)
e E.g. multi-core CPU, multi-socket node, GPU threads, etc. e E.g. multiple nodes within a cluster, multiple GPUs within a node
e Programming models: OpenMP, pthreads, MPI, CUDA e Programming models: MPI
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Capacity vs Gapability

How do we "spend" parallelism?

o Capacity computing

o Improve time-to-solution of a problem that can also run on less number of processes
o E.g.solve many small problems

e Capability computing

o Solve a problem that was impossible to solve on less processes
o E.g.solve aproblem using N nodes, that cannot fit in memory of less nodes
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High Throughput Computing sometimes used to identify capacity computing, with HPC used to mean capability computing




Capacity vs Gapability

How do we "spend" parallelism?

o Capacity computing

o Improve time-to-solution of a problem that can also run on less number of processes
o E.g.solve many small problems

e Capability computing

o Solve a problem that was impossible to solve on less processes

o E.g.solve aproblem using N nodes, that cannot fit in memory of less nodes

More "capacity-like"
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Defining Scalability

Concepts of parallel computing

e Scalability: The rate at which time-to-solution improves as we increase processing units

¢ Weak scaling: Increase processing units; keep the local problem size fixed = for increasing global problem size

e Strong scaling: Increase processing units; keep the global problem size fixed = for decreasing local problem size




Defining Scalability

Concepts of parallel computing

e Scalability: The rate at which time-to-solution improves as we increase processing units

¢ Weak scaling: Increase processing units; keep the local problem size fixed = for increasing global problem size

e Strong scaling: Increase processing units; keep the global problem size fixed = for decreasing local problem size
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Defining Scalability

Concepts of parallel computing

e Scalability: The rate at which time-to-solution improves as we increase processing units

¢ Weak scaling: Increase processing units; keep the local problem size fixed = for increasing global problem size

e Strong scaling: Increase processing units; keep the global problem size fixed = for decreasing local problem size
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Quantifying Scalability

Scalability

e Speedup S when using N processes

O TO : Reference time-to-solution (using N processors, nodes, GPUs, etc.)

o T(N): Time-to-solution using N > N processes

e Parallel efficiency €

e |dealscaling: € ~ 1

28
49
56
98

112

Juwels-Booster,

® V=123 x 224
Ideal
o
o
o
o
o
28 4956 98 112
Nnodes
T [hrs] S
8.02 -
4.87 1.65
4.10 1.96
2.67 3.01
2.39 CRCT)

0.94
0.98
0.86
0.84




Modeling Scalability

Amdahl's Law

e f:fraction of application that can be parallelized
e Tj:time-to-solution of code when using one process

e N: Number of processes
T
nN)zm—ﬁnb+ﬁ£

To 1

10

10°

f=0.5
f=0.6
f=0.7
f=0.8
f=0.9

100 0

7102




Amdahl's Law

A practical example

e Consider the calculation of 7t via simple Monte Carlo:

o Define a unit square.Setnpit = 0

o Randomly pick points (x, y) within the unit square
o IfX® +y2 < I,npy+ =1
o Repeat N times

e The ratio nnit/N approaches the area of a circle quadrant = %




Amdahl's Law

A practical example

unsigned long int hits = 0;
for(unsigned long int i=0; i<N; i+ ) {
double x = drand48();
double y = drand48();
if(x*xx + yxy < 1)
hits += 1;




Amdahl's Law

A practical example

unsigned long int hits = 0;
for(unsigned long int i=0; i<N; i+ ) {
double x = drand48();
double y = drand48();
if(x*xx + yxy < 1)
hits += 1;

e Parallelizable parts
o The loop over N




Amdahl's Law

A practical example

unsigned long int hits = 0;
for(unsigned long int i=0; i<N; i+ ) {
double x = drand48();
double y = drand48();
if(x*xx + yxy < 1)
hits += 1;

e Parallelizable parts
o The loop over N

e Scalar parts
o Initialization
o Summing the partial nhit and division by N




Monte Carlo estimation of 7t

e N =14,968,800

Mproc

o N o0 B W DN

t (sec)
0.53
0.27
0.19
0.16
0.12
0.10
0.11
0.11

T
3.141543
3.141355
3.141089
3.141137
3.141135
3.141290
3.141533
3.141195

Speed-up
w H O O

N

N=14968800
®
®
2




Monte Carlo estimation of 7t

e N =479,001,600

Mproc

o N o0 B W DN

t (sec)
13.70
7.58
4.74
3.56
2.86
240
2.08
1.82

T
3.141558
3.141605
3.141603
3.141647
3.141650
3.141604
3.141625
3.141646

Speed-up
w H O O

N

N=14968800
N=479001600




Cluster computing

By now you should have followed instructions to:

— Generate an ssh key-pair

— Log into our system



Cluster Computing

What's in a supercomputer?

Login nodes
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Cluster Computing

What's in a supercomputer?

e Compute Nodes
o Computational units - CPU and potentially a co-processor, e.g. a GPU Login nodes
o Memory (i.e. RAM) (- ) = ) Storage
o Some storage and/or NVMe
o Network interfaces, possibly separate between management and workload

Interconnect

Il IC )| |G )| |G )
C_JI|ICG )| |G )| |G )
C_JI| |IC )| |C )| |C )
C_JI|ICG )| |G )| |G )
| IC )| |G )| |G )
C_JI| IC )| |C )| |C )
C_JI| |IC )| |C )| |C )

Compute Nodes




Cluster Computing

What's in a supercomputer?

e Compute Nodes
o Computational units - CPU and potentially a co-processor, e.g. a GPU Login nodes
o Memory (i.e. RAM) (- ) = ) Storage
o Some storage and/or NVMe
o Network interfaces, possibly separate between management and workload

Interconnect

e |nterconnect
o Interfaces on nodes
o Wiring and switches
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Cluster Computing

What's in a supercomputer?

e Compute Nodes
Computational units - CPU and potentially a co-processor, e.g. a GPU Login nodes

Memory (i.e. RAM) (- ] = ) Storage
Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

(e}

(¢]

(¢]

Interconnect

o

e |nterconnect
o Interfaces on nodes
o Wiring and switches
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Cluster Computing

What's in a supercomputer?

e Compute Nodes
Computational units - CPU and potentially a co-processor, e.g. a GPU Login nodes

Memory (i.e. RAM) (- ] = ) Storage
Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

(e}
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Interconnect

o

e |nterconnect
o Interfaces on nodes
o Wiring and switches
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e Front-end nodes
o For user access

o Compiling, submitting jobs, etc. “ Compute Nodes




Cluster Computing

Specific configuration of the Cyl cluster

e Various nodes with different architectures

o Hostnames: cyco{1, ... ,8},pho{1,2,3,4}, cwpo{1,2}, cwgo{1,2}, Login nodes
sim0?, etc. (- ] » )

Storage

e We will be using nodes from the p100 partition for now:

o Hostnames are cyc01, cyc02, ..., cyc08. Three are reserved for our Interconnect

lesson

o 2X16-core Intel Xeon
o 128 GBytes RAM
o 2XP100 GPUs each

e Common storage for our course: /onyx/data/sds406f24/ ( N[ Y [ Y (
) . ) L ) ( )
C_ I ICG ) G )| |G )
) . ) L ) . )
C_ I ICG ) G )| |G )
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Cluster Computing

e Loginto alogin node or frontend node. Login node in our case has hostname front02

e To run programs on compute nodes, a job scheduler is available
¢ Distinguish between interactive and batch jobs




Cluster Computing

e Loginto alogin node or frontend node. Login node in our case has hostname front02

e To run programs on compute nodes, a job scheduler is available
¢ Distinguish between interactive and batch jobs

SLURM job scheduler

e See currently running and waiting jobs: squeue
e Ask for aninteractive job: salloc
e Submit a batch job: sbatch

e Run an executable: srun




Cluster Gomputing Introductory Example

e Login:

[localhost ~]$ ssh <username>@front02.hpcf.cyi.ac.cy




Cluster Gomputing Introductory Example

e Login:
[localhost ~]$ ssh <username>@front02.hpcf.cyi.ac.cy
e Type hostename. This tells you the name of the node you are currently logged into:

[ikoutsou@front02 ~]$ hostname
front02

this is the login node.




Cluster Gomputing Introductory Example

e Login:
[localhost ~]$ ssh <username>@front02.hpcf.cyi.ac.cy
e Type hostename. This tells you the name of the node you are currently logged into:

[ikoutsou@front02 ~]$ hostname
front02

this is the login node.
e Ask for anode:

[ikoutsou@front®2 ~]$ salloc -N 1 -p pl0@@ --reservation=sds406 -A sds406f24
salloc: Granted job allocation 298614
[ikoutsouacyc0l ~]1$

e Type hostname again:

[ikoutsouacyc@l ~]$ hostname
cycol

this is a compute node.




Cluster Gomputing Introductory Example

e Release the node:

[ikoutsoumcyc@l ~]$ exit
exit
salloc: Relinquishing job allocation 69053

[ikoutsou@front02 ~1%

we're back on front02




Cluster Gomputing Introductory Example

e Release the node:

[ikoutsoumcyc@l ~]$ exit
exit
salloc: Relinquishing job allocation 69053

[ikoutsou@front02 ~1%

we're back on front02

e Our course reservation includes the nodes withcyc in the hostname.




Cluster Gomputing Introductory Example

e Release the node:

[ikoutsoumcyc@l ~]$ exit
exit
salloc: Relinquishing job allocation 69053

[ikoutsou@front02 ~1%

we're back on front02
e Our course reservation includes the nodes withcyc in the hostname.

Please do not hold nodes unnecessarily; when you have nodes salloced you may be blocking other users from using those nodes.




Cluster Gomputing Introductory Example

e Release the node:

[ikoutsoumcyc@l ~]$ exit
exit
salloc: Relinquishing job allocation 69053

[ikoutsou@front02 ~1%

we're back on front02
e Our course reservation includes the nodes withcyc in the hostname.

Please do not hold nodes unnecessarily; when you have nodes salloced you may be blocking other users from using those nodes.

e Use sruninstead of salloc:

[ikoutsou@front@2 ~]$ srun -n 1 -N 1 -p pl00 --reservation=sds406 -A sds406f24 hostname

srun: job 203373 queued and waiting for resources
srun: job 203373 has been allocated resources

cycol

Allocates a node, runs the specified command (in this case hostname), and then exits the node, releasing the allocation.




Cluster Gomputing Introductory Example

e Run multiple instances of hostname in parallel:

[ikoutsou@front®2 ~]$ srun -N 1 -n 2 -p pl00 --reservation=sds406 -A sds406f24 hostname

srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources
cyco1l

cycol




Cluster Gomputing Introductory Example

e Run multiple instances of hostname in parallel:

[ikoutsou@front®2 ~]$ srun -N 1 -n 2 -p pl00 --reservation=sds406 -A sds406f24 hostname

srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources

cyco1l
cycol

o -N 1:useone node
o -n 2:usetwo processes




Cluster Gomputing Introductory Example

e Run multiple instances of hostname in parallel:

[ikoutsou@front@2 ~]$ srun -N 1 -n 2 -p pl0@0 --reservation=sds406 -A sds406f24 hostname

srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources

cyco1l
cycol

o -N 1:useone node
o -n 2:usetwo processes

e Run on more than one node:

[ikoutsou@front@®2 ~]$ srun -N 2 -n 2 -p pl@0® --reservation=sds406 -A sds406f24 hostname

srun: job 203375 queued and waiting for resources
srun: job 203375 has been allocated resources

cycol
cyco2

runs one instance of hostname on each node
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e Run multiple instances of hostname in parallel:

[ikoutsou@front@2 ~]$ srun -N 1 -n 2 -p pl0@0 --reservation=sds406 -A sds406f24 hostname

srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources

cyco1l
cycol

o -N 1:useone node
o -n 2:usetwo processes
e Run on more than one node:

[ikoutsou@front@®2 ~]$ srun -N 2 -n 2 -p pl@0® --reservation=sds406 -A sds406f24 hostname

srun: job 203375 queued and waiting for resources
srun: job 203375 has been allocated resources

cycol
cyco2
runs one instance of hostname on each node
e Try:

[ikoutsou@front®2 ~]$ srun -N 2 -n 4 -p pl00 --reservation=sds406 -A sds406f24 hostname

[ikoutsou@front®2 ~]$ srun -N 2 -n 3 -p pl00 --reservation=sds406 -A sds406f24 hostname
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# Cluster Computing Introductory Example
Need to set up a text editor to edit files on the cluster
e Emacs and Vim are available on the cluster

e Other options are fine, as long as you know what you're doing
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e Make adirectory. List it.

[ikoutsou@front02 ~1$ mkdir SDS406
[ikoutsou@front02 ~1$ 1s

SDS406

[ikoutsou@front02 ~1%
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e Make adirectory. List it.

[ikoutsou@front02 ~1$ mkdir SDS406
[ikoutsou@front02 ~1$ 1s

SDS406

[ikoutsou@front02 ~1%

e Changeintoit:

[ikoutsou@front02 ~1$ cd SDS406/
[ikoutsou@front02 SDS406]$
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e Make adirectory. List it.

[ikoutsou@front02 ~1$ mkdir SDS406
[ikoutsou@front02 ~1$ 1s

SDS406

[ikoutsou@front02 ~1%

e Changeintoit:

[ikoutsou@front02 ~1$ cd SDS406/
[ikoutsou@front02 SDS406]$

e While in sps406/, make another one for this week's lesson and change into it:

[ikoutsou@front02 SDS406]1$%$ mkdir 101
[ikoutsou@front02 SDS406]1$ cd 101/
[ikoutsou@front02 101]1$
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Make a directory. List it.

[ikoutsou@front02 ~1$ mkdir SDS406
[ikoutsou@front02 ~1$ 1s

SDS406

[ikoutsou@front02 ~1%

Change into it:

[ikoutsou@front02 ~1$ cd SDS406/
[ikoutsou@front02 SDS406]$

While in sps406/, make another one for this week's lesson and change into it:

[ikoutsou@front02 SDS406]1$%$ mkdir 101
[ikoutsou@front02 SDS406]1$ cd 101/
[ikoutsou@front02 101]1$

pwd will tell you where you are in the file system:

[ikoutsou@front02 101]1$ pwd
/home/ikoutsou/SDS406/101
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Let's write our own hostname command (you were hoping for "Hello world" @ ?)

e Use emacs to write the source code from the terminal:

[ikoutsou@front@2 101]$ emacs my_hn.c
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Let's write our own hostname command (you were hoping for "Hello world" @ ?)

e Use emacs to write the source code from the terminal:

[ikoutsou@front@2 101]$ emacs my_hn.c

e Typeinthe following program:

#include <unistd.h>
#include <stdio.h>

int
?ain(int argc, char xargv[])
char hname[256];
gethostname(hname, 256);
printf(" Hostname is: %s\n", hname);
return 0;
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Let's write our own hostname command (you were hoping for "Hello world" @ ?)

e Use emacs to write the source code from the terminal:
[ikoutsou@front@2 101]$ emacs my_hn.c

e Typeinthe following program:

#include <unistd.h>
#include <stdio.h>

int
main(int argc, char xargv[])

{
char hname[256];
gethostname(hname, 256);
printf(" Hostname is: %s\n", hname);
return 0;

e Tosave, hold down ctrl, then hold and release x, then hold and release s

e To exit emacs, hold down ctr1, then hold and release x, then hold and release c
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Let's write our own hostname command (you were hoping for "Hello world" @ ?)

e Use emacs to write the source code from the terminal:

[ikoutsou@front@2 101]$ emacs my_hn.c

e Typeinthe following program:

#include <unistd.h>
#include <stdio.h>

int
Tain(int argc, char xargv[])
char hname[256];
gethostname(hname, 256);
printf(" Hostname is: %s\n", hname);
return 0;

e Tosave, hold down ctrl, then hold and release x, then hold and release s

e To exit emacs, hold down ctr1, then hold and release x, then hold and release c

e Bookmark the Emacs reference card:
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf



https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf
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After exiting emacs you are back at the command line

¢ 1s should show the file my_hn.c, which you just typed in and saved:

[ikoutsou@front02 1011%$ 1s
my_hn.c
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After exiting emacs you are back at the command line

¢ 1s should show the file my_hn.c, which you just typed in and saved:

[ikoutsou@front02 1011%$ 1s
my_hn.c

e [t'stime to compile it into an executable we can run:

[ikoutsou@front02 101]$ module load gompi
[ikoutsou@front®2 101]$ gcc my_hn.c -o hn
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After exiting emacs you are back at the command line

¢ 1s should show the file my_hn.c, which you just typed in and saved:

[ikoutsou@front02 1011%$ 1s
my_hn.c

e [t'stime to compile it into an executable we can run:

[ikoutsou@front02 101]$ module load gompi
[ikoutsou@front®2 101]$ gcc my_hn.c -o hn

o -o hnmeans "name the resulting executable hn". If you don't specify -o the executable name defaultsto a.out
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After exiting emacs you are back at the command line

¢ 1s should show the file my_hn.c, which you just typed in and saved:

[ikoutsou@front02 1011%$ 1s
my_hn.c

e [t'stime to compile it into an executable we can run:

[ikoutsou@front02 101]$ module load gompi
[ikoutsou@front®2 101]$ gcc my_hn.c -o hn

o -o hnmeans "name the resulting executable hn". If you don't specify -o the executable name defaultsto a.out

e Type 1s to make sure it has been created. Then run it on the frontend node:

[ikoutsou@front02 1011%$ 1s

hn my_hn.c
[ikoutsou@front02 1011% ./hn
Hostname is: front02
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After exiting emacs you are back at the command line

¢ 1s should show the file my_hn.c, which you just typed in and saved:

[ikoutsou@front02 1011%$ 1s
my_hn.c

e [t'stime to compile it into an executable we can run:

[ikoutsou@front02 101]$ module load gompi
[ikoutsou@front®2 101]$ gcc my_hn.c -o hn

o -o hnmeans "name the resulting executable hn". If you don't specify -o the executable name defaultsto a.out

e Type 1s to make sure it has been created. Then run it on the frontend node:

[ikoutsou@front02 1011%$ 1s

hn my_hn.c
[ikoutsou@front02 1011% ./hn

Hostname is: front02

Note: commands like gcc or 1s are globally accessible because their locations are included in your shell environment's search path. For hn though, which we just
created, you need to explicitly give its path, in this case via ./ which means "current directory".







