
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L01: Introduction, October 20247th

1 / 26

SDS406
SDS406: Introduction to high performance computing

Day and time?

Interleaved lecture and hands-on please always be with your laptops

MSc mandatory course

Elective for PhD students (CyI and UCY)

Assessment
Coursework

Three homework assignments (35%)

In-class participation in labs and small homework exercises (15%)

Final examination (50%)

Final assignment

⇒

2 / 26

Preliminaries
Laptop computers for exercises

To log in to educational cluster

Need an ssh client

Need to learn to use a text editor on a remote system

e.g., VS Code, Emacs, Vim

Go through lesson slides sds406.online

"Lab" format

Each week's lesson will include taught components and practical exercises

For the exercises we will use C (or C++) and Python:

C for performance-targeted exercises

Python for post-processing (analysis and visualization of results)

Access to the educational cluster will be provided with dedicated course accounts

Accounts prepared for you before this lesson

You will use these accounts during the in-class exercises, homeworks, and assignments

I assume that:

this is not your �rst programming course

this is your �rst parallel programming course

3 / 26

https://code.visualstudio.com/
https://www.gnu.org/software/emacs/
https://www.vim.org/download.php
https://sds406.online/

This Lesson
Preliminaries on parallel computing

Terminologies and de�nitions

Overview of high performance computing landscape

Preparation for labs
Log into educational system

Editing source code �les remotely

4 / 26

High-performance computing
"The use of supercomputers to solve complex computational tasks"

5 / 26

1940s First computers, e.g. ENIAC

are effectively supercomputers expensive to buy and operate; large footprint

High-performance computing
"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution

−

−

5 / 26

1940s First computers, e.g. ENIAC

are effectively supercomputers expensive to buy and operate; large footprint

1970s, 80s Dawn of personal computing, but supercomputers needed for specialized tasks,
e.g. Cray-1

parallelism emerges: vectorization, parallel instructions

High-performance computing
"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution

−

−

−

5 / 26

1940s First computers, e.g. ENIAC

are effectively supercomputers expensive to buy and operate; large footprint

1970s, 80s Dawn of personal computing, but supercomputers needed for specialized tasks,
e.g. Cray-1

parallelism emerges: vectorization, parallel instructions

1990s, 2000s Supercomputers via integration of commodity components (e.g. Beowulf
clusters)

Parallelism as we understand it today: distributed and shared memory, message passing,
etc.

High-performance computing
"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution

−

−

−

−

5 / 26

1940s First computers, e.g. ENIAC

are effectively supercomputers expensive to buy and operate; large footprint

1970s, 80s Dawn of personal computing, but supercomputers needed for specialized tasks,
e.g. Cray-1

parallelism emerges: vectorization, parallel instructions

1990s, 2000s Supercomputers via integration of commodity components (e.g. Beowulf
clusters)

Parallelism as we understand it today: distributed and shared memory, message passing,
etc.

2010s onwards Heterogeneous supercomputers

Many sockets per node; co-processors, e.g. GPUs, potentially multiple architectures within
same system

High-performance computing
"The use of supercomputers to solve complex computational tasks"

(Super)Computing evolution

−

−

−

−

−

5 / 26

https://github.com/karlrupp/microprocessor-trend-data

No Dennard scaling after 2005

 (: power, : area, : freq., : voltage)

Roughly, as transistors get smaller, the power density stays constant

This ef�ciency was typically used towards increasing frequency

Supercomputing means Parallel Computing
∼

P ∝ AfV 2 P A f V

6 / 26

https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

No Dennard scaling after 2005

 (: power, : area, : freq., : voltage)

Roughly, as transistors get smaller, the power density stays constant

This ef�ciency was typically used towards increasing frequency

What about Moore's law?

Moore's law is a statement about transistor count

Supercomputing means Parallel Computing
∼

P ∝ AfV 2 P A f V

6 / 26

https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

No Dennard scaling after 2005

 (: power, : area, : freq., : voltage)

Roughly, as transistors get smaller, the power density stays constant

This ef�ciency was typically used towards increasing frequency

What about Moore's law?

Moore's law is a statement about transistor count
And so far seems to be holding strong

Supercomputing means Parallel Computing
∼

P ∝ AfV 2 P A f V

6 / 26

https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

No Dennard scaling after 2005

 (: power, : area, : freq., : voltage)

Roughly, as transistors get smaller, the power density stays constant

This ef�ciency was typically used towards increasing frequency

What about Moore's law?

Moore's law is a statement about transistor count
And so far seems to be holding strong

 Ef�ciencies are now used to increase parallelism rather than frequency

HPC now means more parallel hardware, rather than faster scalar hardware

HPC primarily deals with tackling the challenges of parallelism, from all aspects (hardware,
software, algorithmic, etc.)

Supercomputing means Parallel Computing
∼

P ∝ AfV 2 P A f V

⇒

6 / 26

https://github.com/karlrupp/microprocessor-trend-data

The "Top500" list

Ranked list of top 500 supercomputers populated twice per year

Data shown here since 1993

Shown is High-Performance Linpack (HPL) performance achieved

 Shows that exponential increase has been maintained

https://www.top500.org

Evolution of Supercomputing

⇒

6 / 26

https://www.top500.org/

The "Top500" list

Ranked list of top 500 supercomputers populated twice per year

Data shown here since 1993

Shown is High-Performance Linpack (HPL) performance achieved

 Shows that exponential increase has been maintained

https://www.top500.org

Proliferation of accelerators

Latest AMD accelerators are Instinct GPUs

Intel between 2012 and 2017 includes Xeon Phi

IBM accelerators refer to IBM Cell

 Since 2021, more than half of performance over Top500 now from accelerated
systems

Evolution of Supercomputing

⇒

⇒

6 / 26

https://www.top500.org/

Parallel computing as the main paradigm
High performance computing means parallel computing

Technology trends mean parallelism is essential for advanced computing

7 / 26

Parallel computing as the main paradigm
High performance computing means parallel computing

Technology trends mean parallelism is essential for advanced computing

Practitioners of computational science and engineering bene�t from knowledge of concepts and challenges of parallel computing

7 / 26

Architectures | Algorithms | Performance metrics

Parallel computing as the main paradigm
High performance computing means parallel computing

Technology trends mean parallelism is essential for advanced computing

Practitioners of computational science and engineering bene�t from knowledge of concepts and challenges of parallel computing

Architectures and their characteristics

Algorithms and how amenable they are to parallelisation

Performance metrics and their signi�cance, e.g. sustained and peak �oating point performance, bandwidth, scalability

7 / 26

Characterization of Parallel Workloads
Task vs Data Parallelism

Taxonomy of computer architectures, Flynn's Taxonomy:

Single Instruction stream, Single Data stream (SISD)

Multiple Instruction streams, Single Data stream (MISD)

Single Instruction stream, Multiple Data streams (SIMD)

Multiple Instruction streams, Multiple Data streams (MIMD)

8 / 26

Characterization of Parallel Workloads
Task vs Data Parallelism

Taxonomy of computer architectures, Flynn's Taxonomy:

Single Instruction stream, Single Data stream (SISD)

Multiple Instruction streams, Single Data stream (MISD)

Single Instruction stream, Multiple Data streams (SIMD)

Multiple Instruction streams, Multiple Data streams (MIMD)

Parallel computing

Most computing devices have underlying SIMD architecture units: GPUs, CPUs, etc.

Most supercomputers can be considered MIMD architectures: multiple interconnected computing devices that can issue the same or different instructions on
multiple data

8 / 26

Shared memory

Multiple processes share common memory (common memory address
space)

E.g. multi-core CPU, multi-socket node, GPU threads, etc.

Programming models: OpenMP, pthreads, MPI, CUDA

Distributed memory

Processes have distinct memory domains (different memory address
space)

E.g. multiple nodes within a cluster, multiple GPUs within a node

Programming models: MPI

Shared vs Distributed memory paradigm

9 / 26

Shared memory

Multiple processes share common memory (common memory address
space)

E.g. multi-core CPU, multi-socket node, GPU threads, etc.

Programming models: OpenMP, pthreads, MPI, CUDA

Distributed memory

Processes have distinct memory domains (different memory address
space)

E.g. multiple nodes within a cluster, multiple GPUs within a node

Programming models: MPI

Shared vs Distributed memory paradigm

9 / 26

Capacity vs Capability
How do we "spend" parallelism?

Capacity computing

Improve time-to-solution of a problem that can also run on less number of processes

E.g. solve many small problems

Capability computing

Solve a problem that was impossible to solve on less processes

E.g. solve a problem using nodes, that cannot �t in memory of less nodes

G. Koutsou

N

10 / 26

Capacity vs Capability
How do we "spend" parallelism?

Capacity computing

Improve time-to-solution of a problem that can also run on less number of processes

E.g. solve many small problems

Capability computing

Solve a problem that was impossible to solve on less processes

E.g. solve a problem using nodes, that cannot �t in memory of less nodes

High Throughput Computing sometimes used to identify capacity computing, with HPC used to mean capability computing

G. Koutsou

N

10 / 26

More "capacity-like" More "capability-like"

Capacity vs Capability
How do we "spend" parallelism?

Capacity computing

Improve time-to-solution of a problem that can also run on less number of processes

E.g. solve many small problems

Capability computing

Solve a problem that was impossible to solve on less processes

E.g. solve a problem using nodes, that cannot �t in memory of less nodes

High Throughput Computing sometimes used to identify capacity computing, with HPC used to mean capability computing

G. Koutsou

N

10 / 26

De�ning Scalability
Concepts of parallel computing

Scalability: The rate at which time-to-solution improves as we increase processing units

Weak scaling: Increase processing units; keep the local problem size �xed for increasing global problem size

Strong scaling: Increase processing units; keep the global problem size �xed for decreasing local problem size

G. Koutsou

⇒

⇒

11 / 26

De�ning Scalability
Concepts of parallel computing

Scalability: The rate at which time-to-solution improves as we increase processing units

Weak scaling: Increase processing units; keep the local problem size �xed for increasing global problem size

Strong scaling: Increase processing units; keep the global problem size �xed for decreasing local problem size

G. Koutsou

⇒

⇒

11 / 26

De�ning Scalability
Concepts of parallel computing

Scalability: The rate at which time-to-solution improves as we increase processing units

Weak scaling: Increase processing units; keep the local problem size �xed for increasing global problem size

Strong scaling: Increase processing units; keep the global problem size �xed for decreasing local problem size

G. Koutsou

⇒

⇒

11 / 26

Scalability

Speedup when using processes

: Reference time-to-solution (using processors, nodes, GPUs, etc.)

: Time-to-solution using > processes

Parallel ef�ciency

Ideal scaling:

 [hrs]

28 8.02 – –

49 4.87 1.65 0.94

56 4.10 1.96 0.98

98 2.67 3.01 0.86

112 2.39 3.36 0.84

Quantifying Scalability

G. Koutsou

S N

S(N) = ,
T0
T(N)

T0 N0

T(N) N N0

ϵ

ϵ = S(N)
N0

N

ϵ ≃ 1

N T S ϵ

12 / 26

: fraction of application that can be parallelized

: time-to-solution of code when using one process

: Number of processes

Modeling Scalability
Amdahl's Law

G. Koutsou

f
T0
N

T(N) = (1 − f) + fT0
T0
N

S(N) = =
T0
T(N)

1

1 − f + f
N

13 / 26

Consider the calculation of via simple Monte Carlo:

De�ne a unit square. Set

Randomly pick points (,) within the unit square

If ,

Repeat times

The ratio approaches the area of a circle quadrant

Amdahl's Law
A practical example

G. Koutsou

π

= 0nhit
x y

+ < 1x2 y2 + = 1nhit
N

/Nnhit ⇒ π
4

14 / 26

unsigned long int hits = 0;
for(unsigned long int i=0; i<N; i��) {
 double x = drand48();
 double y = drand48();
 if(x�x + y�y < 1)
 hits += 1;
}

Amdahl's Law
A practical example

G. Koutsou 14 / 26

unsigned long int hits = 0;
for(unsigned long int i=0; i<N; i��) {
 double x = drand48();
 double y = drand48();
 if(x�x + y�y < 1)
 hits += 1;
}

Parallelizable parts

The loop over N

Amdahl's Law
A practical example

G. Koutsou 14 / 26

unsigned long int hits = 0;
for(unsigned long int i=0; i<N; i��) {
 double x = drand48();
 double y = drand48();
 if(x�x + y�y < 1)
 hits += 1;
}

Parallelizable parts

The loop over N

Scalar parts

Initialization

Summing the partial nhit and division by N

Amdahl's Law
A practical example

G. Koutsou 14 / 26

 (sec)

1 0.53 3.141543

2 0.27 3.141355

3 0.19 3.141089

4 0.16 3.141137

5 0.12 3.141135

6 0.10 3.141290

7 0.11 3.141533

8 0.11 3.141195

Monte Carlo estimation of

 = 14,968,800

G. Koutsou

π
N

nproc t π

15 / 26

 (sec)

1 13.70 3.141558

2 7.58 3.141605

3 4.74 3.141603

4 3.56 3.141647

5 2.86 3.141650

6 2.40 3.141604

7 2.08 3.141625

8 1.82 3.141646

Monte Carlo estimation of

 = 479,001,600

G. Koutsou

π
N

nproc t π

15 / 26

Cluster computing
By now you should have followed instructions to:

 Generate an ssh key-pair

 Log into our system

→

→

16 / 26

Cluster Computing
What's in a supercomputer?

G. Koutsou 17 / 26

Compute Nodes

Computational units - CPU and potentially a co-processor, e.g. a GPU

Memory (i.e. RAM)

Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

Cluster Computing
What's in a supercomputer?

G. Koutsou 17 / 26

Compute Nodes

Computational units - CPU and potentially a co-processor, e.g. a GPU

Memory (i.e. RAM)

Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

Interconnect

Interfaces on nodes

Wiring and switches

Cluster Computing
What's in a supercomputer?

G. Koutsou 17 / 26

Compute Nodes

Computational units - CPU and potentially a co-processor, e.g. a GPU

Memory (i.e. RAM)

Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

Interconnect

Interfaces on nodes

Wiring and switches

Storage

Still predominantly spinning disks

Solid state drives are emerging for smaller scratch space

Tape systems for archiving

Cluster Computing
What's in a supercomputer?

G. Koutsou 17 / 26

Compute Nodes

Computational units - CPU and potentially a co-processor, e.g. a GPU

Memory (i.e. RAM)

Some storage and/or NVMe

Network interfaces, possibly separate between management and workload

Interconnect

Interfaces on nodes

Wiring and switches

Storage

Still predominantly spinning disks

Solid state drives are emerging for smaller scratch space

Tape systems for archiving

Front-end nodes

For user access

Compiling, submitting jobs, etc.

Cluster Computing
What's in a supercomputer?

G. Koutsou 17 / 26

Various nodes with different architectures

Hostnames: cyc0{1,���,8}, ph0{1,2,3,4}, cwp0{1,2}, cwg0{1,2},
sim0?, etc.

We will be using nodes from the p100 partition for now:

Hostnames are cyc01, cyc02, ..., cyc08. Three are reserved for our
lesson

2 16-core Intel Xeon

128 GBytes RAM

2 P100 GPUs each

Common storage for our course: /onyx/data/sds406f24/

Cluster Computing
Speci�c con�guration of the CyI cluster

G. Koutsou

×

×

18 / 26

Cluster Computing
Log in to a login node or frontend node. Login node in our case has hostname front02

To run programs on compute nodes, a job scheduler is available

Distinguish between interactive and batch jobs

G. Koutsou 19 / 26

Cluster Computing
Log in to a login node or frontend node. Login node in our case has hostname front02

To run programs on compute nodes, a job scheduler is available

Distinguish between interactive and batch jobs

SLURM job scheduler

See currently running and waiting jobs: squeue

Ask for an interactive job: salloc

Submit a batch job: sbatch

Run an executable: srun

G. Koutsou 19 / 26

Cluster Computing Introductory Example
Log in:

[localhost ~]$ ssh <username>@front02.hpcf.cyi.ac.cy

G. Koutsou 20 / 26

Cluster Computing Introductory Example
Log in:

[localhost ~]$ ssh <username>@front02.hpcf.cyi.ac.cy

Type hostename. This tells you the name of the node you are currently logged into:

[ikoutsou@front02 ~]$ hostname
front02

this is the login node.

G. Koutsou 20 / 26

Cluster Computing Introductory Example
Log in:

[localhost ~]$ ssh <username>@front02.hpcf.cyi.ac.cy

Type hostename. This tells you the name of the node you are currently logged into:

[ikoutsou@front02 ~]$ hostname
front02

this is the login node.

Ask for a node:

[ikoutsou@front02 ~]$ salloc -N 1 �p p100 ��reservation=sds406 -A sds406f24
salloc: Granted job allocation 298614
[ikoutsou@cyc01 ~]$

Type hostname again:

[ikoutsou@cyc01 ~]$ hostname
cyc01

this is a compute node.

G. Koutsou 20 / 26

Cluster Computing Introductory Example
Release the node:

[ikoutsou@cyc01 ~]$ exit
exit
salloc: Relinquishing job allocation 69053
[ikoutsou@front02 ~]$

we're back on front02

G. Koutsou 21 / 26

Cluster Computing Introductory Example
Release the node:

[ikoutsou@cyc01 ~]$ exit
exit
salloc: Relinquishing job allocation 69053
[ikoutsou@front02 ~]$

we're back on front02

Our course reservation includes the nodes withcyc in the hostname.

G. Koutsou 21 / 26

Cluster Computing Introductory Example
Release the node:

[ikoutsou@cyc01 ~]$ exit
exit
salloc: Relinquishing job allocation 69053
[ikoutsou@front02 ~]$

we're back on front02

Our course reservation includes the nodes withcyc in the hostname.

Please do not hold nodes unnecessarily; when you have nodes salloced you may be blocking other users from using those nodes.

G. Koutsou 21 / 26

Cluster Computing Introductory Example
Release the node:

[ikoutsou@cyc01 ~]$ exit
exit
salloc: Relinquishing job allocation 69053
[ikoutsou@front02 ~]$

we're back on front02

Our course reservation includes the nodes withcyc in the hostname.

Please do not hold nodes unnecessarily; when you have nodes salloced you may be blocking other users from using those nodes.

Use srun instead of salloc:

[ikoutsou@front02 ~]$ srun �n 1 -N 1 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203373 queued and waiting for resources
srun: job 203373 has been allocated resources
cyc01

Allocates a node, runs the speci�ed command (in this case hostname), and then exits the node, releasing the allocation.

G. Koutsou 21 / 26

Cluster Computing Introductory Example
Run multiple instances of hostname in parallel:

[ikoutsou@front02 ~]$ srun -N 1 �n 2 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources
cyc01
cyc01

G. Koutsou 22 / 26

Cluster Computing Introductory Example
Run multiple instances of hostname in parallel:

[ikoutsou@front02 ~]$ srun -N 1 �n 2 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources
cyc01
cyc01

-N 1: use one node

�n 2: use two processes

G. Koutsou 22 / 26

Cluster Computing Introductory Example
Run multiple instances of hostname in parallel:

[ikoutsou@front02 ~]$ srun -N 1 �n 2 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources
cyc01
cyc01

-N 1: use one node

�n 2: use two processes

Run on more than one node:

[ikoutsou@front02 ~]$ srun -N 2 �n 2 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203375 queued and waiting for resources
srun: job 203375 has been allocated resources
cyc01
cyc02

runs one instance of hostname on each node

G. Koutsou 22 / 26

Cluster Computing Introductory Example
Run multiple instances of hostname in parallel:

[ikoutsou@front02 ~]$ srun -N 1 �n 2 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203374 queued and waiting for resources
srun: job 203374 has been allocated resources
cyc01
cyc01

-N 1: use one node

�n 2: use two processes

Run on more than one node:

[ikoutsou@front02 ~]$ srun -N 2 �n 2 �p p100 ��reservation=sds406 -A sds406f24 hostname
srun: job 203375 queued and waiting for resources
srun: job 203375 has been allocated resources
cyc01
cyc02

runs one instance of hostname on each node

Try:

[ikoutsou@front02 ~]$ srun -N 2 �n 4 �p p100 ��reservation=sds406 -A sds406f24 hostname

[ikoutsou@front02 ~]$ srun -N 2 �n 3 �p p100 ��reservation=sds406 -A sds406f24 hostname

G. Koutsou 22 / 26

Cluster Computing Introductory Example

Need to set up a text editor to edit �les on the cluster

Emacs and Vim are available on the cluster

G. Koutsou 23 / 26

Cluster Computing Introductory Example

Need to set up a text editor to edit �les on the cluster

Emacs and Vim are available on the cluster

Other options are �ne, as long as you know what you're doing

G. Koutsou 23 / 26

Cluster Computing Introductory Example
Make a directory. List it.

[ikoutsou@front02 ~]$ mkdir SDS406
[ikoutsou@front02 ~]$ ls
SDS406
[ikoutsou@front02 ~]$

G. Koutsou 24 / 26

Cluster Computing Introductory Example
Make a directory. List it.

[ikoutsou@front02 ~]$ mkdir SDS406
[ikoutsou@front02 ~]$ ls
SDS406
[ikoutsou@front02 ~]$

Change into it:

[ikoutsou@front02 ~]$ cd SDS406/
[ikoutsou@front02 SDS406]$

G. Koutsou 24 / 26

Cluster Computing Introductory Example
Make a directory. List it.

[ikoutsou@front02 ~]$ mkdir SDS406
[ikoutsou@front02 ~]$ ls
SDS406
[ikoutsou@front02 ~]$

Change into it:

[ikoutsou@front02 ~]$ cd SDS406/
[ikoutsou@front02 SDS406]$

While in SDS406/, make another one for this week's lesson and change into it:

[ikoutsou@front02 SDS406]$ mkdir l01
[ikoutsou@front02 SDS406]$ cd l01/
[ikoutsou@front02 l01]$

G. Koutsou 24 / 26

Cluster Computing Introductory Example
Make a directory. List it.

[ikoutsou@front02 ~]$ mkdir SDS406
[ikoutsou@front02 ~]$ ls
SDS406
[ikoutsou@front02 ~]$

Change into it:

[ikoutsou@front02 ~]$ cd SDS406/
[ikoutsou@front02 SDS406]$

While in SDS406/, make another one for this week's lesson and change into it:

[ikoutsou@front02 SDS406]$ mkdir l01
[ikoutsou@front02 SDS406]$ cd l01/
[ikoutsou@front02 l01]$

pwd will tell you where you are in the �le system:

[ikoutsou@front02 l01]$ pwd
/home/ikoutsou/SDS406/l01

G. Koutsou 24 / 26

Cluster Computing Introductory Example
Let's write our own hostname command (you were hoping for "Hello world" 🙃 ?)

G. Koutsou 25 / 26

Cluster Computing Introductory Example
Let's write our own hostname command (you were hoping for "Hello world" 🙃 ?)

Use emacs to write the source code from the terminal:

[ikoutsou@front02 l01]$ emacs my_hn.c

G. Koutsou 25 / 26

Cluster Computing Introductory Example
Let's write our own hostname command (you were hoping for "Hello world" 🙃 ?)

Use emacs to write the source code from the terminal:

[ikoutsou@front02 l01]$ emacs my_hn.c

Type in the following program:

#include <unistd.h>
#include <stdio.h>

int
main(int argc, char �argv[])
{
 char hname[256];
 gethostname(hname, 256);
 printf(" Hostname is: %s\n", hname);
 return 0;
}

G. Koutsou 25 / 26

Cluster Computing Introductory Example
Let's write our own hostname command (you were hoping for "Hello world" 🙃 ?)

Use emacs to write the source code from the terminal:

[ikoutsou@front02 l01]$ emacs my_hn.c

Type in the following program:

#include <unistd.h>
#include <stdio.h>

int
main(int argc, char �argv[])
{
 char hname[256];
 gethostname(hname, 256);
 printf(" Hostname is: %s\n", hname);
 return 0;
}

To save, hold down ctrl, then hold and release x, then hold and release s

To exit emacs, hold down ctrl, then hold and release x, then hold and release c

G. Koutsou 25 / 26

Cluster Computing Introductory Example
Let's write our own hostname command (you were hoping for "Hello world" 🙃 ?)

Use emacs to write the source code from the terminal:

[ikoutsou@front02 l01]$ emacs my_hn.c

Type in the following program:

#include <unistd.h>
#include <stdio.h>

int
main(int argc, char �argv[])
{
 char hname[256];
 gethostname(hname, 256);
 printf(" Hostname is: %s\n", hname);
 return 0;
}

To save, hold down ctrl, then hold and release x, then hold and release s

To exit emacs, hold down ctrl, then hold and release x, then hold and release c

Bookmark the Emacs reference card:
https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

G. Koutsou 25 / 26

https://www.gnu.org/software/emacs/refcards/pdf/refcard.pdf

Cluster Computing Introductory Example
After exiting emacs you are back at the command line

G. Koutsou 26 / 26

Cluster Computing Introductory Example
After exiting emacs you are back at the command line

ls should show the �le my_hn.c, which you just typed in and saved:

[ikoutsou@front02 l01]$ ls
my_hn.c

G. Koutsou 26 / 26

Cluster Computing Introductory Example
After exiting emacs you are back at the command line

ls should show the �le my_hn.c, which you just typed in and saved:

[ikoutsou@front02 l01]$ ls
my_hn.c

It's time to compile it into an executable we can run:

[ikoutsou@front02 l01]$ module load gompi
[ikoutsou@front02 l01]$ gcc my_hn.c �o hn

G. Koutsou 26 / 26

Cluster Computing Introductory Example
After exiting emacs you are back at the command line

ls should show the �le my_hn.c, which you just typed in and saved:

[ikoutsou@front02 l01]$ ls
my_hn.c

It's time to compile it into an executable we can run:

[ikoutsou@front02 l01]$ module load gompi
[ikoutsou@front02 l01]$ gcc my_hn.c �o hn

�o hn means "name the resulting executable hn". If you don't specify �o the executable name defaults to a.out

G. Koutsou 26 / 26

Cluster Computing Introductory Example
After exiting emacs you are back at the command line

ls should show the �le my_hn.c, which you just typed in and saved:

[ikoutsou@front02 l01]$ ls
my_hn.c

It's time to compile it into an executable we can run:

[ikoutsou@front02 l01]$ module load gompi
[ikoutsou@front02 l01]$ gcc my_hn.c �o hn

�o hn means "name the resulting executable hn". If you don't specify �o the executable name defaults to a.out

Type ls to make sure it has been created. Then run it on the frontend node:

[ikoutsou@front02 l01]$ ls
hn my_hn.c
[ikoutsou@front02 l01]$./hn
Hostname is: front02

G. Koutsou 26 / 26

Cluster Computing Introductory Example
After exiting emacs you are back at the command line

ls should show the �le my_hn.c, which you just typed in and saved:

[ikoutsou@front02 l01]$ ls
my_hn.c

It's time to compile it into an executable we can run:

[ikoutsou@front02 l01]$ module load gompi
[ikoutsou@front02 l01]$ gcc my_hn.c �o hn

�o hn means "name the resulting executable hn". If you don't specify �o the executable name defaults to a.out

Type ls to make sure it has been created. Then run it on the frontend node:

[ikoutsou@front02 l01]$ ls
hn my_hn.c
[ikoutsou@front02 l01]$./hn
Hostname is: front02

Note: commands like gcc or ls are globally accessible because their locations are included in your shell environment's search path. For hn though, which we just
created, you need to explicitly give its path, in this case via ./ which means "current directory".

G. Koutsou 26 / 26

