
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L02: Introduction, October 202411th

1 / 31

Cluster Computing Introductory Example
Run your new program hn using srun on two nodes with two processes each

2 / 31

Cluster Computing Introductory Example
Run your new program hn using srun on two nodes with two processes each

[ikoutsou@front02 l01]$ srun -N 2 -n 4 -p p100 --reservation=sds406 -A sds406f24 ./hn
 Hostname is: cyc02
 Hostname is: cyc02
 Hostname is: cyc03
 Hostname is: cyc03

2 / 31

Cluster Computing Introductory Example
Run your new program hn using srun on two nodes with two processes each

[ikoutsou@front02 l01]$ srun -N 2 -n 4 -p p100 --reservation=sds406 -A sds406f24 ./hn
 Hostname is: cyc02
 Hostname is: cyc02
 Hostname is: cyc03
 Hostname is: cyc03

It would be good if we could distinguish between processes of the same node.

2 / 31

Cluster Computing Introductory Example
Run your new program hn using srun on two nodes with two processes each

[ikoutsou@front02 l01]$ srun -N 2 -n 4 -p p100 --reservation=sds406 -A sds406f24 ./hn
 Hostname is: cyc02
 Hostname is: cyc02
 Hostname is: cyc03
 Hostname is: cyc03

It would be good if we could distinguish between processes of the same node.

Linux assigns each process with a unique pid. We should retrieve it in our program and print it alongside the hostname

2 / 31

Cluster Computing Introductory Example
Run your new program hn using srun on two nodes with two processes each

[ikoutsou@front02 l01]$ srun -N 2 -n 4 -p p100 --reservation=sds406 -A sds406f24 ./hn
 Hostname is: cyc02
 Hostname is: cyc02
 Hostname is: cyc03
 Hostname is: cyc03

It would be good if we could distinguish between processes of the same node.

Linux assigns each process with a unique pid. We should retrieve it in our program and print it alongside the hostname

Use emacs my_hn.c to open the file again, then modify the C source code as follows:

#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>

int
main(int argc, char *argv[])
{
 char hname[256];
 pid_t p;
 gethostname(hname, 256);
 p = getpid();
 printf(" Hostname is: %s, process id is: %lu\n", hname, p);
 return 0;
}

2 / 31

Cluster Computing Introductory Example
Compile again:

[ikoutsou@front02 l01]$ gcc my_hn.c -o hn

3 / 31

Cluster Computing Introductory Example
Compile again:

[ikoutsou@front02 l01]$ gcc my_hn.c -o hn

Run using srun on two nodes with two processes each (four processes in total)

[ikoutsou@front02 l01]$ srun -N 2 -n 4 -p p100 --reservation=sds406 -A sds406f24 ./hn
Hostname is: cyc02, process id is: 70224
Hostname is: cyc02, process id is: 70225
Hostname is: cyc01, process id is: 3844
Hostname is: cyc01, process id is: 3845

You will likely see different pids in your case

3 / 31

Cluster Computing Introductory Example
Compile again:

[ikoutsou@front02 l01]$ gcc my_hn.c -o hn

Run using srun on two nodes with two processes each (four processes in total)

[ikoutsou@front02 l01]$ srun -N 2 -n 4 -p p100 --reservation=sds406 -A sds406f24 ./hn
Hostname is: cyc02, process id is: 70224
Hostname is: cyc02, process id is: 70225
Hostname is: cyc01, process id is: 3844
Hostname is: cyc01, process id is: 3845

You will likely see different pids in your case

Go nuts 😆 :

[ikoutsou@front02 l01]$ srun -N 2 -n 16 -p p100 --reservation=sds406 -A sds406f24 ./hn
Hostname is: cyc01, process id is: 3891
Hostname is: cyc02, process id is: 70291
Hostname is: cyc01, process id is: 3889
...
Hostname is: cyc02, process id is: 70284
Hostname is: cyc02, process id is: 70268
Hostname is: cyc02, process id is: 70280

(You will see 16 lines; I suppressed some above)

3 / 31

C programming
A short reminder on C programming

#include <unistd.h> // <-- provides definitions for gethostname() and getpid()
#include <stdio.h> // <-- provides definitions for printf()
#include <sys/types.h> // <-- defines the pid_t type

// main() is a function that returns an integer
// main() takes two arguments;
// -> argv[] is an array of strings which holds all command line arguments
// -> argc holds the number of elements of argv

int
main(int argc, char *argv[])
{
 char hname[256]; // <-- declare hname[] as an array of 256 characters (a string of length 256)
 pid_t p; // <-- declare p as a pid_t type, in this case, an unsigned long integer
 gethostname(hname, 256); // <-- call gethostname(), return hostname in hname which is 256 characters long
 p = getpid(); // <-- call getpid(), return value in p
 printf(" Hostname is: %s, process id is: %lu\n", hname, p); // print statement, see below
 return 0; // <-- return a value of 0 to the operating system. By convention 0 means success.
 // Non zero values indicate errors.
}

4 / 31

C programming
The print statement

printf(format, ...);

format: a string which can include any number of conversion specifications (starting with %)

...: arguments, to be converted to strings, one for each conversion specification

5 / 31

C programming
The print statement

printf(format, ...);

format: a string which can include any number of conversion specifications (starting with %)

...: arguments, to be converted to strings, one for each conversion specification

printf(" Hostname is: %s, process id is: %lu\n", hname, p);

%s: take the first argument (hname) and convert it as a string

%lu: take the second argument (p) and convert it as an unsigned long integer

5 / 31

C programming
Let's use a simple program to compute in parallelπ

6 / 31

C programming
Let's use a simple program to compute in parallel

Copy a program I have prepared for you from our shared storage to your home directory:

[ikoutsou@front02 l01]$ cd ..
[ikoutsou@front02 SDS406]$ mkdir l02
[ikoutsou@front02 SDS406]$ cd l02
[ikoutsou@front02 l02]$ cp /onyx/data/sds406f24/l02/pi.c .

Inspect pi.c, e.g.:

[ikoutsou@front02 l02]$ emacs -nw pi.c

π

6 / 31

C programming
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

int
main(int argc, char *argv[])
{
 unsigned long int N = 10000;
 unsigned long int nhit = 0;
 for(int i=0; i<N; i++) {
 double x = drand48();
 double y = drand48();
 if((x*x + y*y) < 1)
 nhit++;
 }
 double pi = 4.0 * (double)nhit/(double)N;
 printf(" N = %16d pi = %lf\n", N, pi);
 return 0;
}

7 / 31

C programming
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

int
main(int argc, char *argv[])
{
 unsigned long int N = 10000;
 unsigned long int nhit = 0;
 for(int i=0; i<N; i++) {
 double x = drand48();
 double y = drand48();
 if((x*x + y*y) < 1)
 nhit++;
 }
 double pi = 4.0 * (double)nhit/(double)N;
 printf(" N = %16d pi = %lf\n", N, pi);
 return 0;
}

Compile and run on frontend:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$./pi
N = 10000 pi = 3.136400

7 / 31

C programming
Now run, e.g. on 4 processes:

8 / 31

C programming
Now run, e.g. on 4 processes:

[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800

8 / 31

C programming
Now run, e.g. on 4 processes:

[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800

We get exactly the same result four times 🤔

8 / 31

C programming
Now run, e.g. on 4 processes:

[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800

We get exactly the same result four times 🤔

We need to seed the random number generator differently for each process

8 / 31

C programming
Now run, e.g. on 4 processes:

[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800
N = 10000 pi = 3.148800

We get exactly the same result four times 🤔

We need to seed the random number generator differently for each process

Use the process id (pid) from the previous example, to seed the random number generator

8 / 31

C programming
Use the process id (pid) from the previous example, to seed the random number generator

9 / 31

C programming
Use the process id (pid) from the previous example, to seed the random number generator

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
int
main(int argc, char *argv[])
{
 unsigned long int N = 10000;
 unsigned long int nhit = 0;

 pid_t p = getpid(); // <-- Add this
 srand48(p); // <-- Add this

 for(int i=0; i<N; i++) {
 double x = drand48();
 double y = drand48();
 if((x*x + y*y) < 1)
 nhit++;
 }
 double pi = 4.0 * (double)nhit/(double)N;
 printf(" N = %16d pi = %lf\n", N, pi);
 return 0;
}

9 / 31

C programming
Use the process id (pid) from the previous example, to seed the random number generator

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
int
main(int argc, char *argv[])
{
 unsigned long int N = 10000;
 unsigned long int nhit = 0;

 pid_t p = getpid(); // <-- Add this
 srand48(p); // <-- Add this

 for(int i=0; i<N; i++) {
 double x = drand48();
 double y = drand48();
 if((x*x + y*y) < 1)
 nhit++;
 }
 double pi = 4.0 * (double)nhit/(double)N;
 printf(" N = %16d pi = %lf\n", N, pi);
 return 0;
}

srand48() sets the random number generator seed

9 / 31

C programming
Use the process id (pid) from the previous example, to seed the random number generator

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
int
main(int argc, char *argv[])
{
 unsigned long int N = 10000;
 unsigned long int nhit = 0;

 pid_t p = getpid(); // <-- Add this
 srand48(p); // <-- Add this

 for(int i=0; i<N; i++) {
 double x = drand48();
 double y = drand48();
 if((x*x + y*y) < 1)
 nhit++;
 }
 double pi = 4.0 * (double)nhit/(double)N;
 printf(" N = %16d pi = %lf\n", N, pi);
 return 0;
}

srand48() sets the random number generator seed

Need a unique seed for each instance of the program use process id.⇒

9 / 31

C programming
Compile again and run:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.150800
N = 10000 pi = 3.143200
N = 10000 pi = 3.151200
N = 10000 pi = 3.152800

10 / 31

C programming
Compile again and run:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.150800
N = 10000 pi = 3.143200
N = 10000 pi = 3.151200
N = 10000 pi = 3.152800

Now we would like to average over these four values to obtain a better estimate of π

10 / 31

C programming
Compile again and run:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.150800
N = 10000 pi = 3.143200
N = 10000 pi = 3.151200
N = 10000 pi = 3.152800

Now we would like to average over these four values to obtain a better estimate of

First redirect the output to a file, e.g.:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi > pi-out.txt

π

10 / 31

C programming
Compile again and run:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi
N = 10000 pi = 3.150800
N = 10000 pi = 3.143200
N = 10000 pi = 3.151200
N = 10000 pi = 3.152800

Now we would like to average over these four values to obtain a better estimate of

First redirect the output to a file, e.g.:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$ srun -N 1 -n 4 -p p100 -A sds406f24 --reservation=sds406 ./pi > pi-out.txt

Now pi-out.txt contains the four lines of output

[ikoutsou@front02 l02]$ ls
pi pi.c pi-out.txt
[ikoutsou@front02 l02]$ more pi-out.txt
N = 10000 pi = 3.113600
N = 10000 pi = 3.128400
N = 10000 pi = 3.156800
N = 10000 pi = 3.148400
[ikoutsou@front02 l02]$

π

10 / 31

C programming
The program awk allows us to add over columns of a file.

11 / 31

C programming
The program awk allows us to add over columns of a file.

E.g.:

[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.136800

11 / 31

C programming
The program awk allows us to add over columns of a file.

E.g.:

[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.136800

Use more processes

[ikoutsou@front02 l02]$ srun -N 2 -n 80 -p p100 -A sds406f24 --reservation=sds406 ./pi > pi-out.txt
[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.142435

11 / 31

C programming
The program awk allows us to add over columns of a file.

E.g.:

[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.136800

Use more processes

[ikoutsou@front02 l02]$ srun -N 2 -n 80 -p p100 -A sds406f24 --reservation=sds406 ./pi > pi-out.txt
[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.142435

$6 is the sixth column in the file, the value for on the given line

pi_sum is our summation variabl

NR is an AWK internal variable, the number of rows

π

11 / 31

C programming
The program awk allows us to add over columns of a file.

E.g.:

[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.136800

Use more processes

[ikoutsou@front02 l02]$ srun -N 2 -n 80 -p p100 -A sds406f24 --reservation=sds406 ./pi > pi-out.txt
[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.142435

$6 is the sixth column in the file, the value for on the given line

pi_sum is our summation variabl

NR is an AWK internal variable, the number of rows

Let's wrap this up in a script "for posterity"

π

11 / 31

C programming
The program awk allows us to add over columns of a file.

E.g.:

[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.136800

Use more processes

[ikoutsou@front02 l02]$ srun -N 2 -n 80 -p p100 -A sds406f24 --reservation=sds406 ./pi > pi-out.txt
[ikoutsou@front02 l02]$ cat pi-out.txt | awk '{pi_sum+=$6}; END {printf "%8.6f\n", pi_sum/NR}'
3.142435

$6 is the sixth column in the file, the value for on the given line

pi_sum is our summation variabl

NR is an AWK internal variable, the number of rows

Let's wrap this up in a script "for posterity"

In fact, we'll write a Slurm batch script

π

11 / 31

C programming
Copy from /onyx/data/sds406f24/l02/pi.sh

#!/bin/bash
#SBATCH -J pi
#SBATCH -o pi.txt
#SBATCH -e pi.err
#SBATCH -p p100
#SBATCH -A sds406f24
#SBATCH --reservation=sds406
#SBATCH -t 00:02:00
#SBATCH -n 64
#SBATCH -N 2
#SBATCH --ntasks-per-node=32

Add these two lines
srun ./pi > pi-out.txt
cat pi-out.txt | awk '{sum+=$6}; END {printf "%8.6f\n", sum/NR}'

12 / 31

C programming
Copy from /onyx/data/sds406f24/l02/pi.sh

#!/bin/bash
#SBATCH -J pi
#SBATCH -o pi.txt
#SBATCH -e pi.err
#SBATCH -p p100
#SBATCH -A sds406f24
#SBATCH --reservation=sds406
#SBATCH -t 00:02:00
#SBATCH -n 64
#SBATCH -N 2
#SBATCH --ntasks-per-node=32

Add these two lines
srun ./pi > pi-out.txt
cat pi-out.txt | awk '{sum+=$6}; END {printf "%8.6f\n", sum/NR}'

All Slurm options that you so far used after srun are now included in the lines starting with #SBATCH− −

12 / 31

C programming
Copy from /onyx/data/sds406f24/l02/pi.sh

#!/bin/bash
#SBATCH -J pi
#SBATCH -o pi.txt
#SBATCH -e pi.err
#SBATCH -p p100
#SBATCH -A sds406f24
#SBATCH --reservation=sds406
#SBATCH -t 00:02:00
#SBATCH -n 64
#SBATCH -N 2
#SBATCH --ntasks-per-node=32

Add these two lines
srun ./pi > pi-out.txt
cat pi-out.txt | awk '{sum+=$6}; END {printf "%8.6f\n", sum/NR}'

All Slurm options that you so far used after srun are now included in the lines starting with #SBATCH

Thus srun is now run without options

− −

12 / 31

C programming
Copy from /onyx/data/sds406f24/l02/pi.sh

#!/bin/bash
#SBATCH -J pi
#SBATCH -o pi.txt
#SBATCH -e pi.err
#SBATCH -p p100
#SBATCH -A sds406f24
#SBATCH --reservation=sds406
#SBATCH -t 00:02:00
#SBATCH -n 64
#SBATCH -N 2
#SBATCH --ntasks-per-node=32

Add these two lines
srun ./pi > pi-out.txt
cat pi-out.txt | awk '{sum+=$6}; END {printf "%8.6f\n", sum/NR}'

All Slurm options that you so far used after srun are now included in the lines starting with #SBATCH

Thus srun is now run without options

Additional options include:

-J: sets the job name

-o and -e: set the files where the output and error should be redirected

-t: sets a time limit. The job will be killed if it exceeds this time (here 2 minutes)

--ntasks-per-node=32: is self explanatory

− −

12 / 31

Cluster Computing Introductory Example
Submit the job

[ikoutsou@front02 l02]$ sbatch pi.sh
Submitted batch job 198021

13 / 31

Cluster Computing Introductory Example
Submit the job

[ikoutsou@front02 l02]$ sbatch pi.sh
Submitted batch job 198021

Query its status. Filter only your jobs:

[ikoutsou@front02 l02]$ squeue -u $(whoami)
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 198021 p100 pi ikoutsou PD 0:00 2 (Reservation)

Status: PD, R, CG, CF: "Pending", "Running", "Completing", "Configuring"

13 / 31

Cluster Computing Introductory Example
Submit the job

[ikoutsou@front02 l02]$ sbatch pi.sh
Submitted batch job 198021

Query its status. Filter only your jobs:

[ikoutsou@front02 l02]$ squeue -u $(whoami)
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 198021 p100 pi ikoutsou PD 0:00 2 (Reservation)

Status: PD, R, CG, CF: "Pending", "Running", "Completing", "Configuring"

After the program completes:

File pi.err contains any errors (hopefully empty)

File pi.txt contains the output of awk what would be printed to the screen had you used srun like before

File pi-out.txt should also contain new values from the srun that was run during the script

−

13 / 31

Cluster Computing Introductory Example
Submit the job

[ikoutsou@front02 l02]$ sbatch pi.sh
Submitted batch job 198021

Query its status. Filter only your jobs:

[ikoutsou@front02 l02]$ squeue -u $(whoami)
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 198021 p100 pi ikoutsou PD 0:00 2 (Reservation)

Status: PD, R, CG, CF: "Pending", "Running", "Completing", "Configuring"

After the program completes:

File pi.err contains any errors (hopefully empty)

File pi.txt contains the output of awk what would be printed to the screen had you used srun like before

File pi-out.txt should also contain new values from the srun that was run during the script

Now your task

−

13 / 31

Cluster Computing Introductory Example
Submit the job

[ikoutsou@front02 l02]$ sbatch pi.sh
Submitted batch job 198021

Query its status. Filter only your jobs:

[ikoutsou@front02 l02]$ squeue -u $(whoami)
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 198021 p100 pi ikoutsou PD 0:00 2 (Reservation)

Status: PD, R, CG, CF: "Pending", "Running", "Completing", "Configuring"

After the program completes:

File pi.err contains any errors (hopefully empty)

File pi.txt contains the output of awk what would be printed to the screen had you used srun like before

File pi-out.txt should also contain new values from the srun that was run during the script

Now your task
Strong scaling of the calculation of using this combination of program and script

−

π

13 / 31

Strong scaling example
Modify the script to obtain a strong scaling of the calculation of using this combination of program and scriptπ

14 / 31

Strong scaling example
Modify the script to obtain a strong scaling of the calculation of using this combination of program and script

First, modify the C file. Change:

unsigned long int N = 10000;

to:

unsigned long int N = atol(argv[1]);

π

14 / 31

Strong scaling example
Modify the script to obtain a strong scaling of the calculation of using this combination of program and script

First, modify the C file. Change:

unsigned long int N = 10000;

to:

unsigned long int N = atol(argv[1]);

This allows passing the number of iterations from the command line. Compile and run this new version and run as follows:

[ikoutsou@front02 l02]$ gcc pi.c -o pi
[ikoutsou@front02 l02]$./pi 100
N = 100 pi = 3.120000
[ikoutsou@front02 l02]$./pi 1024
N = 1024 pi = 3.117188
[ikoutsou@front02 l02]$

π

14 / 31

Strong scaling example
Now modify the batch script looping over different numbers of tasks to provide a strong scaling

15 / 31

Strong scaling example
Now modify the batch script looping over different numbers of tasks to provide a strong scaling

Note that:

In the same script you can call srun as many times as you like, or in a loop

15 / 31

Strong scaling example
Now modify the batch script looping over different numbers of tasks to provide a strong scaling

Note that:

In the same script you can call srun as many times as you like, or in a loop

In the script you can use --ntasks-per-node= in the srun line (rather than after #SBATCH) which allows a different number for each invocation of srun

15 / 31

Strong scaling example
Now modify the batch script looping over different numbers of tasks to provide a strong scaling

Note that:

In the same script you can call srun as many times as you like, or in a loop

In the script you can use --ntasks-per-node= in the srun line (rather than after #SBATCH) which allows a different number for each invocation of srun

You can use the shell command date to get the current time in nanoseconds (see slides that follow)

15 / 31

Strong scaling example
Now modify the batch script looping over different numbers of tasks to provide a strong scaling

Note that:

In the same script you can call srun as many times as you like, or in a loop

In the script you can use --ntasks-per-node= in the srun line (rather than after #SBATCH) which allows a different number for each invocation of srun

You can use the shell command date to get the current time in nanoseconds (see slides that follow)

There are multiple ways to loop in a shell script. E.g.:

for((n=2; n<=64; n+=2)); do
...
done

and the value of n is referenced as $n in the body of the iteration (denoted above by ...)

15 / 31

Strong scaling example
Now modify the batch script looping over different numbers of tasks to provide a strong scaling

Note that:

In the same script you can call srun as many times as you like, or in a loop

In the script you can use --ntasks-per-node= in the srun line (rather than after #SBATCH) which allows a different number for each invocation of srun

You can use the shell command date to get the current time in nanoseconds (see slides that follow)

There are multiple ways to loop in a shell script. E.g.:

for((n=2; n<=64; n+=2)); do
...
done

and the value of n is referenced as $n in the body of the iteration (denoted above by ...)

Integer math can be evaluated by enclosing expressions within $((and)).

E.g. $(($n / 2)) will divide the value of n by two and return the result

As a shorthand, you can omit the leading $ sign inside $((...)). I.e. $((n / 2)) is equivalent to the above

15 / 31

Bash scripting
Some bash basics

Define variables. Whitespace matters

foo=1

16 / 31

Bash scripting
Some bash basics

Define variables. Whitespace matters

foo=1

Reference variables, e.g. to assign to another variable or to print

bar=$foo
echo $bar

16 / 31

Bash scripting
Some bash basics

Define variables. Whitespace matters

foo=1

Reference variables, e.g. to assign to another variable or to print

bar=$foo
echo $bar

Statements enclosed in $(...) are executed, e.g.

[ikoutsou@front02 l02] all_files=$(ls)
[ikoutsou@front02 l02] echo $all_files
hn my_hn.c pi.sh pi pi.c

16 / 31

Bash scripting
Some bash basics

Define variables. Whitespace matters

foo=1

Reference variables, e.g. to assign to another variable or to print

bar=$foo
echo $bar

Statements enclosed in $(...) are executed, e.g.

[ikoutsou@front02 l02] all_files=$(ls)
[ikoutsou@front02 l02] echo $all_files
hn my_hn.c pi.sh pi pi.c

$(...): other useful examples for capturing output:

Get current time in nanoseconds
t0=$(date +%s%N)

16 / 31

Bash scripting
Some bash basics

Define variables. Whitespace matters

foo=1

Reference variables, e.g. to assign to another variable or to print

bar=$foo
echo $bar

Statements enclosed in $(...) are executed, e.g.

[ikoutsou@front02 l02] all_files=$(ls)
[ikoutsou@front02 l02] echo $all_files
hn my_hn.c pi.sh pi pi.c

$(...): other useful examples for capturing output:

Get current time in nanoseconds
t0=$(date +%s%N)

Integer math can be enclosed in $((...)) e.g.

[ikoutsou@front02 l02]$ a=16; b=8
[ikoutsou@front02 l02]$ echo $((a/b))
2

16 / 31

Strong scaling & plotting
Plotting the scaling

Opportunity for a short python tutorial

17 / 31

Strong scaling & plotting
Plotting the scaling

Opportunity for a short python tutorial

Download or copy an example notebook:

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

17 / 31

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

Strong scaling & plotting
Plotting the scaling

Opportunity for a short python tutorial

Download or copy an example notebook:

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

from matplotlib import pyplot as plt
import matplotlib as mpl
import numpy as np
%matplotlib inline

data = np.loadtxt("pi.txt", usecols=(0,2))
times = data[:,0]/1e6
nproc = data[:,1]

fig = plt.figure(1)
fig.clf()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(nproc, times, ls="-", color="r", marker="o")
ax.set_ylabel(r"T [ms]")
ax.set_xlabel(r"n_{proc}")
fig.canvas.draw()
fig.show()

17 / 31

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

Strong scaling & plotting
Plotting the scaling

Opportunity for a short python tutorial

Download or copy an example notebook:

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

from matplotlib import pyplot as plt
import matplotlib as mpl
import numpy as np
%matplotlib inline

data = np.loadtxt("pi.txt", usecols=(0,2))
times = data[:,0]/1e6
nproc = data[:,1]

fig = plt.figure(1)
fig.clf()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(nproc, times, ls="-", color="r", marker="o")
ax.set_ylabel(r"T [ms]")
ax.set_xlabel(r"n_{proc}")
fig.canvas.draw()
fig.show()

If using a local (i.e. on your laptop) installation of Python, you will need to copy pi.txt from the cluster

17 / 31

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

Strong scaling & plotting
Plotting the scaling

Opportunity for a short python tutorial

Download or copy an example notebook:

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

from matplotlib import pyplot as plt
import matplotlib as mpl
import numpy as np
%matplotlib inline

data = np.loadtxt("pi.txt", usecols=(0,2))
times = data[:,0]/1e6
nproc = data[:,1]

fig = plt.figure(1)
fig.clf()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(nproc, times, ls="-", color="r", marker="o")
ax.set_ylabel(r"T [ms]")
ax.set_xlabel(r"n_{proc}")
fig.canvas.draw()
fig.show()

If using a local (i.e. on your laptop) installation of Python, you will need to copy pi.txt from the cluster

If using Colab you will then also need to upload pi.txt

17 / 31

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

Strong scaling & plotting
Plotting the scaling

Opportunity for a short python tutorial

Download or copy an example notebook:

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

from matplotlib import pyplot as plt
import matplotlib as mpl
import numpy as np
%matplotlib inline

data = np.loadtxt("pi.txt", usecols=(0,2))
times = data[:,0]/1e6
nproc = data[:,1]

fig = plt.figure(1)
fig.clf()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.plot(nproc, times, ls="-", color="r", marker="o")
ax.set_ylabel(r"T [ms]")
ax.set_xlabel(r"n_{proc}")
fig.canvas.draw()
fig.show()

If using a local (i.e. on your laptop) installation of Python, you will need to copy pi.txt from the cluster

If using Colab you will then also need to upload pi.txt

This is an example. It is not a unique way of plotting the

17 / 31

https://colab.research.google.com/drive/1E5wt7ww4FD51_g5MhECIdxqsWSj4mcIC?usp=sharing

Strong scaling & plotting
Plotting the scaling

Add a second plot that plots the speed-up

18 / 31

Strong scaling & plotting
Plotting the scaling

Add a second plot that plots the speed-up

Vary the number of hits (); overlay, on the same plot, the scaling (Speed-up vs) for various at least three values of N nproc N

18 / 31

Strong scaling & plotting
Plotting the scaling

Add a second plot that plots the speed-up

Vary the number of hits (); overlay, on the same plot, the scaling (Speed-up vs) for various at least three values of

Some notes:

We're using numpy which allows for array operations, e.g.:

nproc = data[:,1]

N nproc N

18 / 31

Strong scaling & plotting
Plotting the scaling

Add a second plot that plots the speed-up

Vary the number of hits (); overlay, on the same plot, the scaling (Speed-up vs) for various at least three values of

Some notes:

We're using numpy which allows for array operations, e.g.:

nproc = data[:,1]

We're using matplotlib for plotting, and specifically its pyplot submodule (which we alias to plt)

%matplotlib inline works inside notebooks; draws the plots "inline" with the notebook cells

You can also save the figure at the end, e.g.: plt.figure(1).savefig("scaling.pdf")

N nproc N

18 / 31

Parallel calculation of

For next lesson

Carry out a strong scaling analysis of our calculation script

Use two sizes for and scale using 2, ..., 64 processes with all even intermediate values:

=518,918,400

=4,151,347,200

You should provide me with: i) the bash and ii) python script, as well as iii) your two pi.txt files (name them differently), and iv) the resulting plot as a figure

π

π
N

N1

N2

19 / 31

Programming in C: good practices
Some good practices when programming in C for our course

20 / 31

Programming in C: good practices
Some good practices when programming in C for our course

The C programming language is rather low-level

20 / 31

Programming in C: good practices
Some good practices when programming in C for our course

The C programming language is rather low-level

Many checks are omitted in favor of performance and are therefor left to the programmer
(here: programmer == you)

20 / 31

Programming in C: good practices
Some good practices when programming in C for our course

The C programming language is rather low-level

Many checks are omitted in favor of performance and are therefor left to the programmer
(here: programmer == you)

Common cases

20 / 31

Programming in C: good practices
Some good practices when programming in C for our course

The C programming language is rather low-level

Many checks are omitted in favor of performance and are therefor left to the programmer
(here: programmer == you)

Common cases

Going off the end of an array:

int A[10];
A[11] = 8;

20 / 31

Programming in C: good practices
Some good practices when programming in C for our course

The C programming language is rather low-level

Many checks are omitted in favor of performance and are therefor left to the programmer
(here: programmer == you)

Common cases

Going off the end of an array:

int A[10];
A[11] = 8;

Not checking the return value of a function:

FILE *fp = fopen("file.txt", "r");
fscanf(fp, fmt, &var);

when "file.txt" doesn't exits

20 / 31

Programming in C: good practices
Some good practices when programming in C for our course

The C programming language is rather low-level

Many checks are omitted in favor of performance and are therefor left to the programmer
(here: programmer == you)

Common cases

Going off the end of an array:

int A[10];
A[11] = 8;

Not checking the return value of a function:

FILE *fp = fopen("file.txt", "r");
fscanf(fp, fmt, &var);

when "file.txt" doesn't exits

Using malloc() and not checking the return value

double *r = malloc(sizeof(double)*n);
r[0] = 1;

when malloc() returned NULL

20 / 31

Programming in C: good practices
In the following we will introduce some good practices when programming in C

21 / 31

Programming in C: good practices
In the following we will introduce some good practices when programming in C

These are mostly functions we will define that wrap call system functions but also check their return value

21 / 31

Programming in C: good practices
In the following we will introduce some good practices when programming in C

These are mostly functions we will define that wrap call system functions but also check their return value

We will be reusing these repeatedly throughout the course

21 / 31

Programming in C: good practices
File I/O

Opening files with fopen() does not fail gracefully in case of errors

/***
 * Open file; print error if file pointer returned is NULL
 ***/
FILE *
uopen(const char *path, const char *mode)
{
 FILE *fp = fopen(path, mode);
 if(fp == NULL) {
 fprintf(stderr, "fopen(\"%s\", \'%s\') returned null; quitting...\n", path, mode);
 exit(-3);
 }
 return fp;
}

22 / 31

Programming in C: good practices
File I/O

Opening files with fopen() does not fail gracefully in case of errors

/***
 * Open file; print error if file pointer returned is NULL
 ***/
FILE *
uopen(const char *path, const char *mode)
{
 FILE *fp = fopen(path, mode);
 if(fp == NULL) {
 fprintf(stderr, "fopen(\"%s\", \'%s\') returned null; quitting...\n", path, mode);
 exit(-3);
 }
 return fp;
}

We will regularly be using code in which the fopen() function is wrapped in a function that checks its return value

22 / 31

Programming in C: good practices
Command-line arguments

The length of argv[] is determined at run-time, meaning undefined behavior can occur if an insufficient number of arguments is specified on the command-
line.

23 / 31

Programming in C: good practices
Command-line arguments

The length of argv[] is determined at run-time, meaning undefined behavior can occur if an insufficient number of arguments is specified on the command-
line.

/***
 * Print usage
 ***/
void
usage(char *argv[])
{
 fprintf(stderr, "usage: %s N\n", argv[0]);
 return;
}

You will regularly see examples using a function to print the program usage (i.e. the command-line arguments expected by the program)

23 / 31

Programming in C: good practices
Parsing input

Many times we need to check errors specific to the case, such as for fscanf() in the case of average.c

24 / 31

Programming in C: good practices
Parsing input

Many times we need to check errors specific to the case, such as for fscanf() in the case of average.c

int n_scanned = fscanf(fp, " Hostname is: %*s process id is: %*s N = %*d pi = %lf\n", &pi);
if(n_scanned != 1) {
 fprintf(stderr, " Wrong number of variables scanned\n");
 exit(2);
}

When in doubt, use man <function_name> to lookup details on the invocation of functions

24 / 31

Programming in C: good practices
Parsing input

Many times we need to check errors specific to the case, such as for fscanf() in the case of average.c

int n_scanned = fscanf(fp, " Hostname is: %*s process id is: %*s N = %*d pi = %lf\n", &pi);
if(n_scanned != 1) {
 fprintf(stderr, " Wrong number of variables scanned\n");
 exit(2);
}

When in doubt, use man <function_name> to lookup details on the invocation of functions

E.g. in this case:

[ikoutsou@front02 ~]$ man fscanf

will give you the manual page for the function fscanf(), which explains that the return value is the number of converted arguments

24 / 31

Programming in C: good practices
Here are these good practices applied to pi.c

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>

/***
 * Print usage
 ***/
void
usage(char *argv[])
{
 fprintf(stderr, " Usage: %s N\n", argv[0]);
 return;
}

int
main(int argc, char *argv[])
{
 if(argc != 2) {
 usage(argv);
 exit(1);
 }
 unsigned long int N = atol(argv[1]);
 char hname[256];
 pid_t p;
 gethostname(hname, 256);
 p = getpid();
 srand48(p);
 unsigned long int nhit = 0;
 for(unsigned long int i=0; i<N; i++) {
 double x = drand48();
 double y = drand48();
 if((x*x + y*y) < 1)
 nhit++;
 }

 double pi = 4.0 * (double)nhit/(double)N;
 printf(" Hostname is: %s, process id is: %lu N = %16d pi = %lf\n", hname, p, N, pi);
 return 0;
}

25 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

26 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

Pointers are important in C because arrays are defined using offsets from a starting memory address

int *ptr0 = malloc(sizeof(int)*7);

Allocates memory that can hold seven integers and returns the starting memory address into ptr0

26 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

Pointers are important in C because arrays are defined using offsets from a starting memory address

int *ptr0 = malloc(sizeof(int)*7);

Allocates memory that can hold seven integers and returns the starting memory address into ptr0

Accessing elements is the same as calculating offsets from the starting memory address

int element_3 = ptr0[3];

is equivalent to:

int element_3 = *(ptr0+3);

26 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

This way of accessing elements also works when assigning:

ptr0[3] = 42;

is equivalent to:

*(ptr0+3) = 42;

Note that pointer offsets take into account the type of the pointer, e.g.:

int element_2 = *(ptr0+2);

adds 2*sizeof(int) to the address pointed to by ptr0 because ptr0 is a pointer to an int, whereas:

double element_4 = *(ptr1+4);

adds 4*sizeof(double) to the address pointed to by ptr1 because ptr1 is a pointer to a double.

27 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

Note also the ampersand operator (&) which is in some way the inverse to *:

double *ptr_to_element_4 = ptr1+4;

is equivalent to:

double *ptr_to_element_4 = &(ptr1[4]);

28 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

The C compiler and runtime do not check whether a pointer being dereferenced is pointing to allocated memory. E.g.:

int *ptr0;
int element_3 = ptr0[3];

The above code will compile and may even run. The value stored in element_3 is undefined and using it may cause errors difficult to debug:

It may cause a generic error, such as segmentation fault

It may cause an error at a later stage in the program

29 / 31

Programming in C: pointers
Pointers in C

A pointer is a variable that holds a memory address

int *ptr0; /* <-- A pointer to a memory address that will hold an integer variable */
double *ptr1; /* <-- A pointer to a memory address that will hold a double precision variable */

The C compiler and runtime do not check whether a pointer being dereferenced is pointing to allocated memory. E.g.:

int *ptr0;
int element_3 = ptr0[3];

The above code will compile and may even run. The value stored in element_3 is undefined and using it may cause errors difficult to debug:

It may cause a generic error, such as segmentation fault

It may cause an error at a later stage in the program

This feature of C contributes to its efficiency while requiring more care taken from the programmer

No runtime required to keep count of allocated space, array bounds, etc. every time you access or modify an array

Easier to introduce bugs that are especially hard to track

29 / 31

Programming in C: arrays
Arrays in C: Static vs Dynamic allocation

Statically allocated arrays

char line[256];
double x[10];

Allocated on the stack

Length known at compile time

Limited in size

30 / 31

Programming in C: arrays
Arrays in C: Static vs Dynamic allocation

Statically allocated arrays

char line[256];
double x[10];

Allocated on the stack

Length known at compile time

Limited in size

Dynamically allocated arrays

char *line;
double *x;
line = malloc(256*sizeof(char));
x = malloc(10*sizeof(double));
...
free(x);
free(line);

Allocated on the heap

Length known at run time (unknown at compile time)

Size restricted only by RAM constraints (e.g. maximum available contiguous RAM)

30 / 31

Programming in C: arrays
Arrays in C: Static vs Dynamic allocation

Statically allocated arrays

char line[256];
double x[10];

Allocated on the stack

Length known at compile time

Limited in size

Dynamically allocated arrays

char *line;
double *x;
line = malloc(256*sizeof(char));
x = malloc(10*sizeof(double));
...
free(x);
free(line);

Allocated on the heap

Length known at run time (unknown at compile time)

Size restricted only by RAM constraints (e.g. maximum available contiguous RAM)

If malloc() fails, it will return NULL

30 / 31

Programming in C: arrays
Arrays in C: Static vs Dynamic allocation

Statically allocated arrays

char line[256];
double x[10];

Allocated on the stack

Length known at compile time

Limited in size

Dynamically allocated arrays

char *line;
double *x;
line = malloc(256*sizeof(char));
x = malloc(10*sizeof(double));
...
free(x);
free(line);

Allocated on the heap

Length known at run time (unknown at compile time)

Size restricted only by RAM constraints (e.g. maximum available contiguous RAM)

If malloc() fails, it will return NULL

Another good practice: always wrap malloc() in own function that checks return value is not NULL

30 / 31

Programming in C: good practices
Arrays in C: Static vs Dynamic allocation
/***
 * Allocate memory; print error if NULL is returned
 ***/
void *
ualloc(size_t size)
{
 void *ptr = malloc(size);
 if(ptr == NULL) {
 fprintf(stderr, "malloc() returned null; quitting...\n");
 exit(-2);
 }
 return ptr;
}

...

int
main(int argc, char *argv[])
{
 ...
 char *line;
 double *x;
 x = ualloc(10*sizeof(double));
 line = ualloc(256*sizeof(char));
 ...
 free(x);
 free(line);
 return 0;
}

31 / 31

