
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L03: Introduction to OpenMP, 14 October 2024th

1 / 38

t [sec] t [sec]

2 4.35 33.93
4 2.45 19.32

6 1.73 12.17
8 1.37 9.39

10 1.16 7.55
12 1.01 6.60

14 0.93 5.56
16 0.85 5.56

18 0.82 4.73

20 0.76 4.60
22 0.73 4.13

24 0.73 3.87
26 0.71 3.72

28 0.70 3.47
30 0.66 3.35

32 0.67 3.11
34 0.66 3.78

36 0.67 3.63
38 0.64 3.46

40 0.64 3.38
42 0.63 3.24

44 0.66 3.14
46 0.64 3.14

48 0.64 3.13

50 0.65 3.10
52 0.65 3.24

54 0.65 2.96
56 0.65 2.92

58 0.66 2.86
60 0.65 3.03

62 0.67 2.82
64 0.77 2.89

Parallel calculation of π
nproc

2 / 38

Outline
Shared-memory parallel programming

Introduction to OpenMP

Parallelizing programs across the cores of the same node

Performance and optimization

Assessing performance of programs

Floating point performance and memory I/O

Assessing bottlenecks

3 / 38

Parallel programming using OpenMP
Introduction with examples

4 / 38

Parallel programming
For the remainder of the semester we will introduce three models

Shared memory programming via the use of OpenMP (starting today)

Distributed memory programming via the use of MPI

GPU programming with CUDA

5 / 38

OpenMP introduction

OpenMP

Shared memory parallelization

Use multiple threads that share a common memory address space

Pragma-based, i.e. uses directives rather than functions (mostly)

Also an API, i.e. some simple functionality through function calls

6 / 38

OpenMP introduction
Starts with a single thread

Define parallel regions
More than one parallel regions can be defined

So-called fork-join concept

7 / 38

OpenMP introduction
Starts with a single thread

Define parallel regions
More than one parallel regions can be defined

So-called fork-join concept

int
main()
{
 /* ...
 work to do outside parallel region
 ... */
#pragma omp parallel
 {
 /* ...
 work to do in parallel
 ... */
 }
 /* ...
 more work outside parallel region
 ... */
 return 0;
}

8 / 38

int
main()
{
 /* ...
 work to do outside parallel region
 ... */
#pragma omp parallel
 {
 /* ...
 work to do in parallel
 ... */
 }
 /* ...
 more work outside parallel region
 ... */
 return 0;
}

Parallel regions:

No jumping in or out (e.g. goto)

No branching in or out (e.g. inside if-else block)

A thread can terminate the program from within a block

OpenMP

OpenMP runtime takes care of thread management, forking, joining, etc.

Specify number of threads via environment variable OMP_NUM_THREADS

OpenMP introduction

9 / 38

int
main()
{
 /* ...
 work to do outside parallel region
 ... */
#pragma omp parallel
 {
 /* ...
 work to do in parallel
 ... */
 }
 /* ...
 more work outside parallel region
 ... */
 return 0;
}

#include <omp.h>
...
/* Return a unique thread ID for each thread */
int tid = omp_get_thread_num();
...
/* Return the total number of threads */
int nth = omp_get_num_threads();

Parallel regions:

No jumping in or out (e.g. goto)

No branching in or out (e.g. inside if-else block)

A thread can terminate the program from within a block

OpenMP

OpenMP runtime takes care of thread management, forking, joining, etc.

Specify number of threads via environment variable OMP_NUM_THREADS

In parallel region, use: omp_get_thread_num() and omp_get_num_threads()

OpenMP introduction

10 / 38

OpenMP introduction
Compiling and running

Using GNU or Intel compilers, compile via:

[ikoutsou@front02 ~]$ cc -fopenmp program.c -o program

11 / 38

OpenMP introduction
Compiling and running

Using GNU or Intel compilers, compile via:

[ikoutsou@front02 ~]$ cc -fopenmp program.c -o program

Note that, depending on the compiler, the #pragma may not cause an error even if you accidentally omit -fopenmp. You will just produce a scalar code.

11 / 38

OpenMP introduction
Compiling and running

Using GNU or Intel compilers, compile via:

[ikoutsou@front02 ~]$ cc -fopenmp program.c -o program

Note that, depending on the compiler, the #pragma may not cause an error even if you accidentally omit -fopenmp. You will just produce a scalar code.

Run via:

[ikoutsou@front02 ~]$ export OMP_NUM_THREADS=8
[ikoutsou@front02 ~]$./program

or

[ikoutsou@front02 ~]$ OMP_NUM_THREADS=8 ./program

11 / 38

OpenMP introduction
Compiling and running

Using GNU or Intel compilers, compile via:

[ikoutsou@front02 ~]$ cc -fopenmp program.c -o program

Note that, depending on the compiler, the #pragma may not cause an error even if you accidentally omit -fopenmp. You will just produce a scalar code.

Run via:

[ikoutsou@front02 ~]$ export OMP_NUM_THREADS=8
[ikoutsou@front02 ~]$./program

or

[ikoutsou@front02 ~]$ OMP_NUM_THREADS=8 ./program

This will run on the frontend node.

11 / 38

OpenMP introduction
Example: every thread says hi

Make a directory for this part of the lesson, e.g. l03:

[ikoutsou@front02 SDS406]$ mkdir l03
[ikoutsou@front02 SDS406]$ cd l03

Copy first exercise (ex01):

[ikoutsou@front02 l03]$ cp -r /onyx/data/sds406f24/l03/ex01 .
[ikoutsou@front02 l03]$ cd ex01

Inspect file a.c, compile it, and run on one node with srun:

[ikoutsou@front02 l03]$ more a.c
...
[ikoutsou@front02 l03]$ srun -N 1 -p p100 ./a

12 / 38

OpenMP introduction
Example: every thread says hi
Now, let's add a parallel region around the print statement:

Add the parallel region:

#include <stdio.h>

int
main()
{
#pragma omp parallel
 {
 printf("Hi\n");
 }
 return 0;
}

Compile, adding the -fopenmp option, then run:

[ikoutsou@front02 l03]$ cc -fopenmp -o a a.c
[ikoutsou@front02 l03]$ srun -N 1 -p p100 ./a
Hi
Hi

you should see 2 His

13 / 38

OpenMP introduction
Example: every thread says hi
The default number of threads is 2, but we can control this with OMP_NUM_THREADS:

Set OMP_NUM_THREADS before running. No need to compile again:

[ikoutsou@front02 l03]$ OMP_NUM_THREADS=1 srun -N 1 -p p100 ./a
Hi
[ikoutsou@front02 l03]$ OMP_NUM_THREADS=2 srun -N 1 -p p100 ./a
Hi
Hi
[ikoutsou@front02 l03]$ OMP_NUM_THREADS=3 srun -N 1 -p p100 ./a
Hi
Hi
Hi

You can also set OMP_NUM_THREADS to something larger than the number of physical cores. You will simply be over-subscribing the cores, i.e. more than one thread
will run per core.

[ikoutsou@front02 l03]$ OMP_NUM_THREADS=256 srun -N 1 -p p100 ./a
Hi
... (254 lines suppressed)
Hi

14 / 38

OpenMP introduction
Example: every thread says hi
Now let's see how to use the OpenMP API. We want each thread that says Hi, to also write its thread id and the total number of threads.

Add the following:

1. Include <omp.h> in the beginning of the source code

2. Get the thread id with omp_get_thread_num()

3. Get the number of threads with omp_get_num_threads()

15 / 38

OpenMP introduction
Example: every thread says hi
#include <stdio.h>
#include <omp.h>

int
main()
{
#pragma omp parallel
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 printf("Hi, I am thread: %2d of %2d\n", tid, nth);
 }
 return 0;
}

Compile and run as usual. You should see something like:

[ikoutsou@front02 l03]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./a
Hi, I am thread: 0 of 5
Hi, I am thread: 3 of 5
Hi, I am thread: 4 of 5
Hi, I am thread: 1 of 5
Hi, I am thread: 2 of 5

Note that the order by which each thread reaches the printf() statement is non-deterministic

Indeed, you should make no assumptions on the order by which each thread runs

16 / 38

OpenMP overview
We will overview some OpenMP pragmas that will be used in the exercises and examples that follow

The list is non-exhaustive. We will look at a subset of pragmas that are more commonly used

The latest specification is OpenMP version 5. The full reference can be found here: OpenMP reference guide

Note that OpenMP is a specification. It defines a set of pragmas and their functionality. Most compilers implement some version of the specification, but not all
implement the latest version

17 / 38

https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-0519-web.pdf

OpenMP overview
For loops

#pragma omp parallel for
for(int i=0; i<n; i++){
 ...
}

will split the n iterations over the available threads

Static scheduling, e.g.:

#pragma omp parallel for schedule(static, 10)

a chunk is 10 iterations. Threads receive a chunk to work on in order.

Dynamic scheduling, e.g.:

#pragma omp parallel for schedule(dynamic, 10)

a chunk is 10 iterations. The next available thread receives a chunk to work on until all are exhausted.

Guided scheduling, e.g.:

#pragma omp parallel for schedule(guided)

chunk size is modified as iterations are consumed.

18 / 38

OpenMP overview
For loops

#pragma omp parallel
{
#pragma omp for
 for(int i=0; i<n; i++){
 ...
 }
}

use within a parallel region, i.e. when a parallel region is already open.

Reduction within for loop:

int sum_variable = 0;
#pragma omp parallel for reduction(+: sum_variable)
for(int i=0; i<n; i++){
 sum_variable += ...;
 ...
}

outside the parallel region, sum_variable contains the sum over all threads

19 / 38

OpenMP overview
Critical regions: each thread should run the region one-at-a-time

#pragma omp parallel
{
 #pragma omp critical
 {
 ... code to be run by each thread, one-at-a-time ...
 }
}

of course, critical regions are serialized

Single regions: within a parallel region, run by one thread

#pragma omp parallel
{
 #pragma omp single
 {
 printf("Hi\n");
 }
}

20 / 38

OpenMP overview
Tasks: define a block of code, a task to be run by a thread:

#pragma omp task
{
 ...
}

Usually we want one thread to create tasks. This is done within a single region

int a = 1;
int b = 2;
#pragma omp parallel
{
#pragma omp single
{
 #pragma omp task
 {
 /* This task is created by the thread that enters the single region
 and will be consumed by one of the threads of the pool */
 a = a+1;
 }
 #pragma omp task
 {
 /* This task is created by the thread that enters the single region
 and will be consumed by one of the threads of the pool */
 b = b+1;
 }
}
}

21 / 38

OpenMP overview
Data sharing attributes

int a = 1;
int b = 2;
#pragma omp parallel private(a) shared(b)
{
 ...
}

Each thread will have a local copy of a. Modifying a within the parallel region?

The variable b is shared between threads. Each thread can modify it and all threads will see the same data

You can also set a default attribute for data sharing

int a = 1, b = 2, c = 3, d = 4, e = 5;
pragma omp parallel default(shared) private(b)
{
 ...
}

All variables are shared, except b which is private

22 / 38

OpenMP Examples
Data sharing example

Copy ex02 as before:

[ikoutsou@front02 ex01]$ cd ../
[ikoutsou@front02 l03]$ cp -r /onyx/data/sds406f24/l03/ex02 .
[ikoutsou@front02 l03]$ cd ex02

Inspect, compile, and run a.c:

[ikoutsou@front02 ex02]$ cc -fopenmp -o a a.c

23 / 38

OpenMP Examples
Data sharing example

Copy ex02 as before:

[ikoutsou@front02 ex01]$ cd ../
[ikoutsou@front02 l03]$ cp -r /onyx/data/sds406f24/l03/ex02 .
[ikoutsou@front02 l03]$ cd ex02

Inspect, compile, and run a.c:

[ikoutsou@front02 ex02]$ cc -fopenmp -o a a.c

[ikoutsou@front02 l03]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./a
Thread: 2 of 5, some_var = 42
Thread: 4 of 5, some_var = 42
Thread: 0 of 5, some_var = 42
Thread: 1 of 5, some_var = 42
Thread: 3 of 5, some_var = 42

all threads have some_var set to the value 42

23 / 38

OpenMP Examples
Data sharing example

Now change the code so that the variable is modified within the parallel block, for example:

#include <stdio.h>
#include <omp.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

Compile and run. Run it a few times.

24 / 38

OpenMP Examples
Data sharing example

Now change the code so that the variable is modified within the parallel block, for example:

#include <stdio.h>
#include <omp.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

Compile and run. Run it a few times.

Try adding a small delay, e.g.:

 ...
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 sleep(1);
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 ...

24 / 38

OpenMP Examples
Data sharing example

Set the variable to private, to avoid this race condition

#include <stdio.h>
#include <omp.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

25 / 38

OpenMP Examples
Data sharing example

Set the variable to private, to avoid this race condition

#include <stdio.h>
#include <omp.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

[ikoutsou@front02 ex02]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./a
Thread: 0 of 5, some_var = 0
Thread: 4 of 5, some_var = 4
Thread: 2 of 5, some_var = 2
Thread: 3 of 5, some_var = 3
Thread: 1 of 5, some_var = 1

25 / 38

OpenMP Examples
Data sharing example

Set the variable to private, to avoid this race condition

#include <stdio.h>
#include <omp.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = tid;
 int nth = omp_get_num_threads();
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

[ikoutsou@front02 ex02]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./a
Thread: 0 of 5, some_var = 0
Thread: 4 of 5, some_var = 4
Thread: 2 of 5, some_var = 2
Thread: 3 of 5, some_var = 3
Thread: 1 of 5, some_var = 1

What is the value of some_var after the parallel region ends?

25 / 38

OpenMP Examples
Data sharing example

Initial value of a private variable

#include <stdio.h>
#include <omp.h>
#include <unistd.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = some_var+tid;
 int nth = omp_get_num_threads();
 sleep(1);
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

What does this code to produce?

26 / 38

OpenMP Examples
Data sharing example

Initial value of a private variable

#include <stdio.h>
#include <omp.h>
#include <unistd.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = some_var+tid;
 int nth = omp_get_num_threads();
 sleep(1);
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

What does this code to produce?

some_var is uninitialized in the parallel region. Its initial value is undefined and not guaranteed to be zero.

26 / 38

OpenMP Examples
Data sharing example

Initial value of a private variable

#include <stdio.h>
#include <omp.h>
#include <unistd.h>

int
main()
{
 int some_var = 42;
#pragma omp parallel private(some_var)
 {
 int tid = omp_get_thread_num();
 some_var = some_var+tid;
 int nth = omp_get_num_threads();
 sleep(1);
 printf("Thread: %2d of %2d, some_var = %d\n", tid, nth, some_var);
 }
 return 0;
}

What does this code to produce?

some_var is uninitialized in the parallel region. Its initial value is undefined and not guaranteed to be zero.

Replace private(some_var) with firstprivate(some_var).

26 / 38

OpenMP Examples
Data sharing example

Shared vs private array

#include <stdio.h>
#include <omp.h>

int
main()
{
 int arr[32] = {0,0};
#pragma omp parallel shared(arr)
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 arr[tid] = tid;
 }

 for(int i=0; i<32; i++) {
 printf("arr[%d] = %d\n", i, arr[i]);
 }
 return 0;
}

What do you expect the output of this program to be?

27 / 38

OpenMP Examples
Data sharing example

Shared vs private array

#include <stdio.h>
#include <omp.h>

int
main()
{
 int arr[32] = {0,0};
#pragma omp parallel shared(arr)
 {
 int tid = omp_get_thread_num();
 int nth = omp_get_num_threads();
 arr[tid] = tid;
 }

 for(int i=0; i<32; i++) {
 printf("arr[%d] = %d\n", i, arr[i]);
 }
 return 0;
}

What do you expect the output of this program to be?

[ikoutsou@front02 ex02]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./a
arr[0] = 0
arr[1] = 1
arr[2] = 2
arr[3] = 3
arr[4] = 4
arr[5] = 0
...
arr[31] = 0

27 / 38

OpenMP Examples
Linear algebra

Operation:

Copy ex03 as before:

[ikoutsou@front02 ex02]$ cd ../
[ikoutsou@front02 l03]$ cp -r /onyx/data/sds406f24/l03/ex03 .
[ikoutsou@front02 l03]$ cd ex03

Inspect, compile, and run axpy.c:

[ikoutsou@front02 ex03]$ cc -std=c99 -fopenmp -o axpy axpy.c
[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./axpy $((1024*1024*32))
t0 = 0.184823 sec, t1 = 0.183408 sec, diff z norm = 0.000000e+00

= a +zi xi yi

28 / 38

OpenMP Examples
Linear algebra

Operation:

Copy ex03 as before:

[ikoutsou@front02 ex02]$ cd ../
[ikoutsou@front02 l03]$ cp -r /onyx/data/sds406f24/l03/ex03 .
[ikoutsou@front02 l03]$ cd ex03

Inspect, compile, and run axpy.c:

[ikoutsou@front02 ex03]$ cc -std=c99 -fopenmp -o axpy axpy.c
[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=5 srun -N 1 -p p100 ./axpy $((1024*1024*32))
t0 = 0.184823 sec, t1 = 0.183408 sec, diff z norm = 0.000000e+00

Use an OpenMP pragma to parallelize the second occurrence of the main for loop

= a +zi xi yi

28 / 38

for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
}

#pragma omp parallel for
for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
}

OpenMP Examples
Linear algebra

Operation:

Change:

= a +zi xi yi

29 / 38

for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
}

#pragma omp parallel for
for(int i=0; i<n; i++) {
 z_1[i] = a*x[i] + y[i];
}

It's also useful to report the total number of threads:

#pragma omp parallel
{
 int nth = omp_get_num_threads();
#pragma omp single
 printf(" nth = %2d, t0 = %lf sec, t1 = %lf sec, diff z norm = %e\n", nth, t0, t1, norm);
}

OpenMP Examples
Linear algebra

Operation:

Change:

= a +zi xi yi

29 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1, 2, and 4

= a +zi xi yi

30 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1, 2, and 4

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=1 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 1, t0 = 0.130369 sec, t1 = 0.134538 sec, diff z norm = 0.000000e+00

= a +zi xi yi

30 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1, 2, and 4

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=1 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 1, t0 = 0.130369 sec, t1 = 0.134538 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=2 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 2, t0 = 0.130446 sec, t1 = 0.109080 sec, diff z norm = 0.000000e+00

= a +zi xi yi

30 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1, 2, and 4

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=1 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 1, t0 = 0.130369 sec, t1 = 0.134538 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=2 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 2, t0 = 0.130446 sec, t1 = 0.109080 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=4 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 4, t0 = 0.129832 sec, t1 = 0.110167 sec, diff z norm = 0.000000e+00

= a +zi xi yi

30 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1, 2, and 4

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=1 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 1, t0 = 0.130369 sec, t1 = 0.134538 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=2 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 2, t0 = 0.130446 sec, t1 = 0.109080 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=4 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 4, t0 = 0.129832 sec, t1 = 0.110167 sec, diff z norm = 0.000000e+00

If you see no improvement (like above), this is because of default configuration of Slurm which is reserving only one CPU core for all threads

= a +zi xi yi

30 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1, 2, and 4

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=1 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 1, t0 = 0.130369 sec, t1 = 0.134538 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=2 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 2, t0 = 0.130446 sec, t1 = 0.109080 sec, diff z norm = 0.000000e+00

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=4 srun -N 1 -p p100 ./axpy $((1024*1024*32))
nth = 4, t0 = 0.129832 sec, t1 = 0.110167 sec, diff z norm = 0.000000e+00

If you see no improvement (like above), this is because of default configuration of Slurm which is reserving only one CPU core for all threads

Use --cpus-per-task

[ikoutsou@front02 ex03]$ OMP_NUM_THREADS=4 srun -N 1 --cpus-per-task=8 -p p100 ./axpy $((1024*1024*32))
nth = 4, t0 = 0.130742 sec, t1 = 0.036430 sec, diff z norm = 0.000000e+00

= a +zi xi yi

30 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1,...,8. How does the runtime scale?

= a +zi xi yi

31 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1,...,8. How does the runtime scale?

[ikoutsou@front02 ex03]$ for ((n=1;n<=8;n++))
> do
> OMP_NUM_THREADS=$n srun -N 1 --cpus-per-task=16 -p p100 ./axpy $((1024*1024*32))
> done

= a +zi xi yi

31 / 38

OpenMP Examples
Linear algebra

Operation:

Run for OMP_NUM_THREADS from 1,...,8. How does the runtime scale?

[ikoutsou@front02 ex03]$ for ((n=1;n<=8;n++))
> do
> OMP_NUM_THREADS=$n srun -N 1 --cpus-per-task=16 -p p100 ./axpy $((1024*1024*32))
> done

 nth = 1, t0 = 0.131535 sec, t1 = 0.133377 sec, diff z norm = 0.000000e+00
 nth = 2, t0 = 0.129817 sec, t1 = 0.069848 sec, diff z norm = 0.000000e+00
 nth = 3, t0 = 0.129444 sec, t1 = 0.047347 sec, diff z norm = 0.000000e+00
 nth = 4, t0 = 0.130564 sec, t1 = 0.036938 sec, diff z norm = 0.000000e+00
 nth = 5, t0 = 0.130000 sec, t1 = 0.029731 sec, diff z norm = 0.000000e+00
 nth = 6, t0 = 0.129202 sec, t1 = 0.025233 sec, diff z norm = 0.000000e+00
 nth = 7, t0 = 0.135529 sec, t1 = 0.023321 sec, diff z norm = 0.000000e+00
 nth = 8, t0 = 0.130832 sec, t1 = 0.022796 sec, diff z norm = 0.000000e+00

= a +zi xi yi

31 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

= a +zi xi yi

32 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

= a +zi xi yi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

= a +zi xi yi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

One multiplication ()

= a +zi xi yi

axi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

= a +zi xi yi

axi
+yi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, in total, 2*n floating point operations, irrespective of the number of processes

= a +zi xi yi

axi
+yi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, in total, 2*n floating point operations, irrespective of the number of processes

Modify the code to also report the sustained Gflop/s of the parallelized axpy part

= a +zi xi yi

axi
+yi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, in total, 2*n floating point operations, irrespective of the number of processes

Modify the code to also report the sustained Gflop/s of the parallelized axpy part

double p = 2.0*n/t1/1e9;
printf(" nth = %2d, t0 = %lf sec, t1 = %lf sec, diff z norm = %e, perf = %lf Gflop/s\n", nth, t0, t1, norm, p);

= a +zi xi yi

axi
+yi

33 / 38

OpenMP Examples
Linear algebra

Operation:

How many floating point operations are carried out?

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, in total, 2*n floating point operations, irrespective of the number of processes

Modify the code to also report the sustained Gflop/s of the parallelized axpy part

double p = 2.0*n/t1/1e9;
printf(" nth = %2d, t0 = %lf sec, t1 = %lf sec, diff z norm = %e, perf = %lf Gflop/s\n", nth, t0, t1, norm, p);

 nth = 1, t0 = 0.129865 sec, t1 = 0.132042 sec, diff z norm = 0.000000e+00, perf = 0.508239 Gflop/s
 nth = 2, t0 = 0.130650 sec, t1 = 0.069006 sec, diff z norm = 0.000000e+00, perf = 0.972505 Gflop/s
 nth = 3, t0 = 0.132397 sec, t1 = 0.046861 sec, diff z norm = 0.000000e+00, perf = 1.432086 Gflop/s
 nth = 4, t0 = 0.130751 sec, t1 = 0.036120 sec, diff z norm = 0.000000e+00, perf = 1.857945 Gflop/s
 nth = 5, t0 = 0.129818 sec, t1 = 0.029459 sec, diff z norm = 0.000000e+00, perf = 2.278043 Gflop/s
 nth = 6, t0 = 0.132037 sec, t1 = 0.025257 sec, diff z norm = 0.000000e+00, perf = 2.657054 Gflop/s
 nth = 7, t0 = 0.129651 sec, t1 = 0.022796 sec, diff z norm = 0.000000e+00, perf = 2.943868 Gflop/s
 nth = 8, t0 = 0.130022 sec, t1 = 0.022132 sec, diff z norm = 0.000000e+00, perf = 3.032221 Gflop/s

= a +zi xi yi

axi
+yi

33 / 38

OpenMP Examples
Linear algebra

Dot product operation:

Copy ex04 as before:

[ikoutsou@front02 ex03]$ cd ../
[ikoutsou@front02 ex03]$ cp -r /onyx/data/sds406f24/l03/ex04 .
[ikoutsou@front02 ex03]$ cd ex04

r = y =xT ∑
i=0

n−1

xiyi

34 / 38

OpenMP Examples
Linear algebra

Dot product operation:

Copy ex04 as before:

[ikoutsou@front02 ex03]$ cd ../
[ikoutsou@front02 ex03]$ cp -r /onyx/data/sds406f24/l03/ex04 .
[ikoutsou@front02 ex03]$ cd ex04

Inspect, compile, and run xdoty.c:

[ikoutsou@front02 ex04]$ cc -std=c99 -o xdoty xdoty.c
[ikoutsou@front02 ex04]$ srun -N 1 -p p100 ./xdoty $((32*1024*1024))
t0 = 0.086199 sec, t1 = 0.087750 sec, norms = 8.387960e+06, 8.387960e+06

r = y =xT ∑
i=0

n−1

xiyi

34 / 38

OpenMP Examples
Linear algebra

Dot product operation:

Copy ex04 as before:

[ikoutsou@front02 ex03]$ cd ../
[ikoutsou@front02 ex03]$ cp -r /onyx/data/sds406f24/l03/ex04 .
[ikoutsou@front02 ex03]$ cd ex04

Inspect, compile, and run xdoty.c:

[ikoutsou@front02 ex04]$ cc -std=c99 -o xdoty xdoty.c
[ikoutsou@front02 ex04]$ srun -N 1 -p p100 ./xdoty $((32*1024*1024))
t0 = 0.086199 sec, t1 = 0.087750 sec, norms = 8.387960e+06, 8.387960e+06

Use an OpenMP pragma to parallelize the second occurrence of the main for loop

r = y =xT ∑
i=0

n−1

xiyi

34 / 38

double norm_1 = 0;

for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

double norm_1 = 0;
#pragma omp parallel for reduction(+:norm_1)
for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

OpenMP Examples
Linear algebra

Dot product operation:

r = y =xT ∑
i=0

n−1

xiyi

35 / 38

double norm_1 = 0;

for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

double norm_1 = 0;
#pragma omp parallel for reduction(+:norm_1)
for(int i=0; i<n; i++) {
 norm_1 += x[i]*y[i];
}

Try, e.g. 4 threads

[ikoutsou@front02 ex04]$ OMP_NUM_THREADS=4 srun -N 1 --cpus-per-task=16 -p p100 ./xdoty $((32*1024*1024))
nthr = 4, t0 = 0.086064 sec, t1 = 0.023266 sec, norms = 8.387960e+06, 8.387960e+06

OpenMP Examples
Linear algebra

Dot product operation:

r = y =xT ∑
i=0

n−1

xiyi

35 / 38

OpenMP Examples
Linear algebra

Dot product operation:

How many floating point operations are carried out?

r = y =xT ∑
i=0

n−1

xiyi

36 / 38

OpenMP Examples
Linear algebra

Dot product operation:

How many floating point operations are carried out?

Modify the code to also report the sustained Gflop/s of the parallelized xdoty part

r = y =xT ∑
i=0

n−1

xiyi

36 / 38

OpenMP Examples
Linear algebra

Operation:

r = ⋅∑
i=0

n−1

xi yi

37 / 38

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

r = ⋅∑
i=0

n−1

xi yi

37 / 38

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

r = ⋅∑
i=0

n−1

xi yi

37 / 38

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi

37 / 38

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi
r = r + ⋅xi yi

37 / 38

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi
r = r + ⋅xi yi

37 / 38

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

For n iterations, 2*n/t1/1e9 in Gflops/s

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi
r = r + ⋅xi yi

37 / 38

OpenMP for linear algebra
[ikoutsou@front02 ex04]$ for ((n=1;n<=8;n++))
> do
> OMP_NUM_THREADS=$n srun -N 1 --cpus-per-task=16 -p p100 ./xdoty $((1024*1024*32))
> done

38 / 38

axpy [Gflop/s] xdoty [Gflop/s]
1 0.51 0.78
2 0.98 1.53
3 1.43 2.21
4 1.83 2.88
5 2.28 3.59
6 2.61 4.28
7 2.93 4.93
8 2.98 5.28

OpenMP for linear algebra
[ikoutsou@front02 ex04]$ for ((n=1;n<=8;n++))
> do
> OMP_NUM_THREADS=$n srun -N 1 --cpus-per-task=16 -p p100 ./xdoty $((1024*1024*32))
> done

nOMP

38 / 38

axpy [Gflop/s] xdoty [Gflop/s]
1 0.51 0.78
2 0.98 1.53
3 1.43 2.21
4 1.83 2.88
5 2.28 3.59
6 2.61 4.28
7 2.93 4.93
8 2.98 5.28

OpenMP for linear algebra
[ikoutsou@front02 ex04]$ for ((n=1;n<=8;n++))
> do
> OMP_NUM_THREADS=$n srun -N 1 --cpus-per-task=16 -p p100 ./xdoty $((1024*1024*32))
> done

nOMP

38 / 38

