
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L04: OpenMP and Optimization, 21 October 2024st

1 / 39

Outline for today
OpenMP

Review of OpenMP examples; axpy and xdoty

2 / 39

Outline for today
OpenMP

Review of OpenMP examples; axpy and xdoty

Performance analysis and optimization

Understanding of program performance

Understanding of hardware characteristics in terms of performance

Understanding of potential performance of a program given the hardware characteristics

Optimization steps to approach potential performance

2 / 39

OpenMP Examples
Linear algebra

Operation:

= a +zi xi yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

= a +zi xi yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

= a +zi xi yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

= a +zi xi yi

axi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

= a +zi xi yi

axi
+yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

= a +zi xi yi

axi
+yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

For n iterations, 2*n floating point operations (flops) in total

= a +zi xi yi

axi
+yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

For n iterations, 2*n floating point operations (flops) in total

If the 2*n flops require t1 seconds, the floating point rate is: 2*n/t1 flops/s

= a +zi xi yi

axi
+yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

For n iterations, 2*n floating point operations (flops) in total

If the 2*n flops require t1 seconds, the floating point rate is: 2*n/t1 flops/s

Equivalently 2*n/t1/1e9 Gflops/s

= a +zi xi yi

axi
+yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

For n iterations, 2*n floating point operations (flops) in total

If the 2*n flops require t1 seconds, the floating point rate is: 2*n/t1 flops/s

Equivalently 2*n/t1/1e9 Gflops/s

double p = 2.0*n/t1/1e9;
printf(" nth = %2d, t0 = %lf sec, t1 = %lf sec, diff z norm = %e, perf = %lf Gflop/s\n", nth, t0, t1, norm, p);

= a +zi xi yi

axi
+yi

3 / 39

OpenMP Examples
Linear algebra

Operation:

r = ⋅∑
i=0

n−1

xi yi

4 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

r = ⋅∑
i=0

n−1

xi yi

4 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

r = ⋅∑
i=0

n−1

xi yi

4 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi

4 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi
r = r + ⋅xi yi

4 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi
r = r + ⋅xi yi

4 / 39

OpenMP Examples
Linear algebra

Operation:

Number of floating point operations

For each iteration, i.e. for each element i

One multiplication ()

One addition ()

Therefore, a total of 2 floating point operations per iteration

For n iterations, 2*n/t1/1e9 in Gflops/s

r = ⋅∑
i=0

n−1

xi yi

⋅xi yi
r = r + ⋅xi yi

4 / 39

OpenMP for linear algebra
[ikoutsou@front02 ex03]$ for ((n=1; n<=16; n++))
> do OMP_NUM_THREADS=${n} srun -N 1 -p p100 -n 1 --cpus-per-task=64 ./axpy $((32*1024*1024))
> done

5 / 39

OpenMP for linear algebra
[ikoutsou@front02 ex03]$ for ((n=1; n<=16; n++))
> do OMP_NUM_THREADS=${n} srun -N 1 -p p100 -n 1 --cpus-per-task=64 ./axpy $((32*1024*1024))
> done

Similarly for xdoty

5 / 39

axpy [Gflop/s] xdoty [Gflop/s]
1 0.509 0.791
2 0.999 1.564
3 1.443 2.226
4 1.890 2.907
5 2.294 3.594
6 2.705 4.268
7 3.000 4.922
8 3.102 5.465
9 3.247 5.651

10 3.179 6.183
11 3.396 6.660
12 3.404 7.039
13 3.334 7.057
14 3.353 7.534
15 3.276 7.953
16 3.169 7.253

OpenMP for linear algebra
[ikoutsou@front02 ex03]$ for ((n=1; n<=16; n++))
> do OMP_NUM_THREADS=${n} srun -N 1 -p p100 -n 1 --cpus-per-task=64 ./axpy $((32*1024*1024))
> done

Similarly for xdoty

nOMP

5 / 39

axpy [Gflop/s] xdoty [Gflop/s]
1 0.509 0.791
2 0.999 1.564
3 1.443 2.226
4 1.890 2.907
5 2.294 3.594
6 2.705 4.268
7 3.000 4.922
8 3.102 5.465
9 3.247 5.651

10 3.179 6.183
11 3.396 6.660
12 3.404 7.039
13 3.334 7.057
14 3.353 7.534
15 3.276 7.953
16 3.169 7.253

OpenMP for linear algebra
[ikoutsou@front02 ex03]$ for ((n=1; n<=16; n++))
> do OMP_NUM_THREADS=${n} srun -N 1 -p p100 -n 1 --cpus-per-task=64 ./axpy $((32*1024*1024))
> done

Similarly for xdoty

nOMP

5 / 39

Performance Analysis

6 / 39

Performance analysis
Understand performance and hardware to evaluate the potential performance of your code

Performance analysis: analysis of the performance of a code; comparison to what is expected

Identification of bottlenecks

Identification of improvements that can be made

7 / 39

Performance analysis
Understand performance and hardware to evaluate the potential performance of your code

Performance analysis: analysis of the performance of a code; comparison to what is expected

Identification of bottlenecks

Identification of improvements that can be made

Hardware characteristics

7 / 39

Peak floating point rate

The theoretical, highest number of floating point operations that can be
carried out by a computational unit

Depends on: clock rate, vector length, FPUs per core, cores per socket

Performance analysis
Understand performance and hardware to evaluate the potential performance of your code

Performance analysis: analysis of the performance of a code; comparison to what is expected

Identification of bottlenecks

Identification of improvements that can be made

Hardware characteristics

7 / 39

Peak floating point rate

The theoretical, highest number of floating point operations that can be
carried out by a computational unit

Depends on: clock rate, vector length, FPUs per core, cores per socket

Peak bandwidth

The theoretical, highest number of bytes that can be read/written
from/to some level of memory (L1,2,3 cache, RAM, etc.)

For RAM: data rate, channels, ranks, banks

Performance analysis
Understand performance and hardware to evaluate the potential performance of your code

Performance analysis: analysis of the performance of a code; comparison to what is expected

Identification of bottlenecks

Identification of improvements that can be made

Hardware characteristics

7 / 39

Peak floating point rate

The theoretical, highest number of floating point operations that can be
carried out by a computational unit

Depends on: clock rate, vector length, FPUs per core, cores per socket

Peak bandwidth

The theoretical, highest number of bytes that can be read/written
from/to some level of memory (L1,2,3 cache, RAM, etc.)

For RAM: data rate, channels, ranks, banks

When optimizing, it is important to have these numbers in mind for the machine you're running on

Performance analysis
Understand performance and hardware to evaluate the potential performance of your code

Performance analysis: analysis of the performance of a code; comparison to what is expected

Identification of bottlenecks

Identification of improvements that can be made

Hardware characteristics

7 / 39

P100 GPU nodes
On Linux, you can obtain processor details via cat /proc/cpuinfo:

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 85
model name : Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
...
cpu MHz : 2100.000
cache size : 22528 KB
physical id : 0
siblings : 32
core id : 0
cpu cores : 16
...
flags : fpu vme de pse tsc msr pae mce cx8 apic ...

Look up the processor on https://ark.intel.com

8 / 39

https://ark.intel.com/

Peak performance
Peak Floating Point rate

16-cores per socket, 2 sockets per node, clock: 2.1 GHz

Best case: two 512-bit multiply-and-add per cycle (AVX-512 FMA)

In double precision: 2 (8 mul + 8 add) per cycle = 32 flop/cycle

Therefore: 2.1x10 cycles/s 32 flop/cycle = 67.2 Gflop/s per core

1,075.2 Gflop/s per socket

Peak BW

Up to 6 channels per socket 128 GB/s to RAM per socket

Assuming all channels filled, two sockets 256 GB/s
 p100 nodes: 4 channels per socket filled

Theoretical peak 80 GBytes/s per socket

Some (semi-)standard tools

On Linux, you can obtain processor details via cat /proc/cpuinfo.

You can obtain topology and memory info e.g. hwloc, dmidecode (latter requires access to /dev/mem)

×
9 ×

⇒
⇒

→

9 / 39

Computational kernels
Sustained performance

Sustained FP-rate: the measured, average number of floating point operations carried out by the kernel per unit time

add, sub, and mul count as 1 flop

dev, sqrt, sin, etc. count 2 flops. Depends on architecture

Count number of flops in kernel and divide by runtime

Alternatively, or for more complex codes, use performance counters

In our examples we will see cases of kernels where the flops are countable

Sustained BW: the measured, average bytes read/written from main memory per unit time

As in the case of FP-rate, count bytes needed to be read and bytes needed to be written to and from RAM and divide by run time

Maximum data reuse assumption: "local" data, once read from RAM, never needs to be re-read

≥

10 / 39

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double a;

/* ... Some initialization of a, x, and y
 * omitted here ...
 */

for(int i=0; i<L; i++) {
 y[i] = a*x[i] + y[i];
}

Maximum data reuse
A (hopefully) familiar example:

,

It's implementation in C:

= a ⋅ +yi xi yi i = 0, . . . , L − 1

11 / 39

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double a;

/* ... Some initialization of a, x, and y
 * omitted here ...
 */

for(int i=0; i<L; i++) {
 y[i] = a*x[i] + y[i];
}

Number of flops

Number of bytes of I/O

Read each element of once

Read each element of once

Write an element of once

: word-length in bytes, e.g.

 bytes for single precision,

 bytes for double, etc.

Maximum data reuse
A (hopefully) familiar example:

,

It's implementation in C:

= a ⋅ +yi xi yi i = 0, . . . , L − 1

= L ⋅ 2Nfp

= w ⋅ (3 ⋅ L)NIO

y
x
y

w
w = 4
w = 8

11 / 39

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double a;

/* ... Some initialization of a, x, and y
 * omitted here ...
 */

for(int i=0; i<L; i++) {
 y[i] = a*x[i] + y[i];
}

Number of flops

Number of bytes of I/O

Read each element of once

Read each element of once

Write an element of once

: word-length in bytes, e.g.

 bytes for single precision,

 bytes for double, etc.

How about the memory accesses of ?

Maximum data reuse
A (hopefully) familiar example:

,

It's implementation in C:

= a ⋅ +yi xi yi i = 0, . . . , L − 1

= L ⋅ 2Nfp

= w ⋅ (3 ⋅ L)NIO

y
x
y

w
w = 4
w = 8

a

11 / 39

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double a;

/* ... Some initialization of a, x, and y
 * omitted here ...
 */

for(int i=0; i<L; i++) {
 y[i] = a*x[i] + y[i];
}

Number of flops

Number of bytes of I/O

Read each element of once

Read each element of once

Write an element of once

: word-length in bytes, e.g.

 bytes for single precision,

 bytes for double, etc.

How about the memory accesses of ?

Maximum data reuse assumption: is read only in the first iteration and
remains in cache for all following iterations

Maximum data reuse
A (hopefully) familiar example:

,

It's implementation in C:

= a ⋅ +yi xi yi i = 0, . . . , L − 1

= L ⋅ 2Nfp

= w ⋅ (3 ⋅ L)NIO

y
x
y

w
w = 4
w = 8

a

a

11 / 39

Maximum data reuse
Another example:

It's implementation in C:

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double sigma;

/* ... Some initialization of sigma, x, and y omitted here ...
 */

for(int i=1; i<L; i++) {
 y[i] = sigma*(x[i] - x[i-1]);
}

Number of flops

= σ ⋅ (−), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp

12 / 39

Maximum data reuse
Another example:

It's implementation in C:

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double sigma;

/* ... Some initialization of sigma, x, and y omitted here ...
 */

for(int i=1; i<L; i++) {
 y[i] = sigma*(x[i] - x[i-1]);
}

Number of flops

For practical purposes, when , this is

= σ ⋅ (−), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp

L ≫ ≃ L ⋅ 2Nfp

12 / 39

Maximum data reuse
Another example:

It's implementation in C:

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double sigma;

/* ... Some initialization of sigma, x, and y omitted here ...
 */

for(int i=1; i<L; i++) {
 y[i] = sigma*(x[i] - x[i-1]);
}

Number of flops

For practical purposes, when , this is

Number of bytes of I/O

In each iteration, read two elements of and write one of

= σ ⋅ (−), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp

L ≫ ≃ L ⋅ 2Nfp

x y

12 / 39

Maximum data reuse
Another example:

It's implementation in C:

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double sigma;

/* ... Some initialization of sigma, x, and y omitted here ...
 */

for(int i=1; i<L; i++) {
 y[i] = sigma*(x[i] - x[i-1]);
}

Number of flops

For practical purposes, when , this is

Number of bytes of I/O

In each iteration, read two elements of and write one of

But, one element of has been read during previous iteration

= σ ⋅ (−), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp

L ≫ ≃ L ⋅ 2Nfp

x y
x

12 / 39

Maximum data reuse
Another example:

It's implementation in C:

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double sigma;

/* ... Some initialization of sigma, x, and y omitted here ...
 */

for(int i=1; i<L; i++) {
 y[i] = sigma*(x[i] - x[i-1]);
}

Number of flops

For practical purposes, when , this is

Number of bytes of I/O

In each iteration, read two elements of and write one of

But, one element of has been read during previous iteration

= σ ⋅ (−), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp

L ≫ ≃ L ⋅ 2Nfp

x y
x

⇒ = w ⋅ (2 ⋅ (L − 1) + 1) ≃ w ⋅ 2 ⋅ LNIO

12 / 39

Maximum data reuse
For counting , looking at the iteration unrolled may help to reveal data reuse

y[1] = sigma*(x[1] - x[0]);
y[2] = sigma*(x[2] - x[1]);
y[3] = sigma*(x[3] - x[2]);
...
y[L-1] = sigma*(x[L-1] - x[L-2]);

sigma and elements of x[] are required multiple times. However we assume they only need to be read once.

NIO

13 / 39

Maximum data reuse
For counting , looking at the iteration unrolled may help to reveal data reuse

y[1] = sigma*(x[1] - x[0]);
y[2] = sigma*(x[2] - x[1]);
y[3] = sigma*(x[3] - x[2]);
...
y[L-1] = sigma*(x[L-1] - x[L-2]);

sigma and elements of x[] are required multiple times. However we assume they only need to be read once.

Given some measurement of the run-time

FP-rate:

IO-rate:

NIO

T̄

=βfp
Nfp

T̄

=βIO
NIO

T̄

13 / 39

Maximum data reuse
For counting , looking at the iteration unrolled may help to reveal data reuse

y[1] = sigma*(x[1] - x[0]);
y[2] = sigma*(x[2] - x[1]);
y[3] = sigma*(x[3] - x[2]);
...
y[L-1] = sigma*(x[L-1] - x[L-2]);

sigma and elements of x[] are required multiple times. However we assume they only need to be read once.

Given some measurement of the run-time

FP-rate:

IO-rate:

This motivates defining their ratio, which is referred to as intensity

NIO

T̄

=βfp
Nfp

T̄

=βIO
NIO

T̄

I =
Nfp

NIO

13 / 39

Similarly to , we can define the machine flop/byte ratio (
)

E.g. for the nodes of the p100 partition:

Intensities
Computational kernel intensity

Ratio of kernel floating point operations to bytes of I/O

For our previous example:

Note how the problem size drops out constant irrespective of problem size

E.g. for double precision (), =0.125 flops/byte

Machine flop/byte ratio

= = = 1/wIk
Nfp
NIO

2L
2wL

L ⇒ Ik
w = 8 Ik

Ik
Im

=Im
γfp
γIO

= 8.4Im
flop
byte

14 / 39

Intensities
Balance between kernel / hardware intensities

: Kernel is "compute-bound" on this architecture. Higher would lead to higher performance, but higher would not necessarily.

: Kernel is "bandwidth-" or "memory-bound" on this architecture. Higher would lead to higher performance, but higher would not
necessarily.

: Kernel is balanced on this architecture. Ideal situation.

For the example we have been studying

 the kernel is memory-bound

Note the assumptions that enter and

 considers all operations can be a sequence of multiply-and-add

 assumes maximum data reuse

 constant if problem size drops out

≫Ik Im γfp γIO
≪Ik Im γIO γfp

≃Ik Im

≪Ik Im⇒

Ik Im
γfp
βIO
Ik L

15 / 39

double C[M][K];
double A[M][N];
double B[N][K];

for(int m=0; m<M; m++) {
 for(int k=0; k<K; k++) {
 C[m][k] = 0;
 for(int n=0; n<N; n++) {
 C[m][k] += A[m][n]*B[n][k];
 }
 }
}

Kernel computational intensity
Another example: matrix-matrix multiplication

Consider a matrix-matrix multiplication: = ⋅CM×K AM×N BN×K

16 / 39

double C[M][K];
double A[M][N];
double B[N][K];

for(int m=0; m<M; m++) {
 for(int k=0; k<K; k++) {
 C[m][k] = 0;
 for(int n=0; n<N; n++) {
 C[m][k] += A[m][n]*B[n][k];
 }
 }
}

E.g. for a square problem ,

Kernel computational intensity
Another example: matrix-matrix multiplication

Consider a matrix-matrix multiplication: = ⋅CM×K AM×N BN×K

= 2 ⋅M ⋅ K ⋅ NNfp

= w ⋅ (M ⋅ K +M ⋅ N+N ⋅ K)NIO

=Ik 2
w

1

+ +1
M

1
N

1
K

M = N = K ⇒ =Ik 2
3
N
w

16 / 39

double C[M][K];
double A[M][N];
double B[N][K];

for(int m=0; m<M; m++) {
 for(int k=0; k<K; k++) {
 C[m][k] = 0;
 for(int n=0; n<N; n++) {
 C[m][k] += A[m][n]*B[n][k];
 }
 }
}

E.g. for a square problem ,

This is an example of a kernel where depends on the problem size.

On a given architecture with , the kernel transitions from bandwidth-bound to compute-bound as increases.

For double precision (= 8 bytes), the kernel is balanced when .

Kernel computational intensity
Another example: matrix-matrix multiplication

Consider a matrix-matrix multiplication: = ⋅CM×K AM×N BN×K

= 2 ⋅M ⋅ K ⋅ NNfp

= w ⋅ (M ⋅ K +M ⋅ N+N ⋅ K)NIO

=Ik 2
w

1

+ +1
M

1
N

1
K

M = N = K ⇒ =Ik 2
3
N
w

Ik

Im N

w N ≃ 100

16 / 39

Optimization
Given a code you wish to optimize, for an architecture with

What is and and what is the resulting ?

Is the kernel memory or compute bound on this architecture?

What do you obtain for and

For this one requires measuring the performance on the targeted architecture

What are the ratios and ?

These are questions you need to answer before considering optimization

After answering the above, we can start considering targeted optimizations for our kernel on the given machine

If your kernel is memory-bound, we should be trying to optimize for memory I/O. Ideally we try to achieve a .

If your kernel is compute-bound, we should be trying to optimize for a higher FP-rate. Ideally we try to achieve a .

Im
Nfp NIO Ik

βfp βIO

βfp
γfp

βIO
γIO

→ 1βIO
γIO

→ 1
βfp
γfp

17 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

18 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

Run again for 1 to 16 OpenMP threads

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

18 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

Run again for 1 to 16 OpenMP threads

But now, we care about understanding performance; first of all, enable additional compiler optimizations with -O3:

[ikoutsou@front02 l04]$ cc -O3 -fopenmp -o axpy axpy.c

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

18 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

Run again for 1 to 16 OpenMP threads

But now, we care about understanding performance; first of all, enable additional compiler optimizations with -O3:

[ikoutsou@front02 l04]$ cc -O3 -fopenmp -o axpy axpy.c

We would also like to ensure we're running each OpenMP thread on a physical core

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

18 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

Run again for 1 to 16 OpenMP threads

But now, we care about understanding performance; first of all, enable additional compiler optimizations with -O3:

[ikoutsou@front02 l04]$ cc -O3 -fopenmp -o axpy axpy.c

We would also like to ensure we're running each OpenMP thread on a physical core

This needs to be ensured at two levels:

Slurm's salloc or srun

With the OpenMP runtime

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

18 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

Run again for 1 to 16 OpenMP threads

But now, we care about understanding performance; first of all, enable additional compiler optimizations with -O3:

[ikoutsou@front02 l04]$ cc -O3 -fopenmp -o axpy axpy.c

We would also like to ensure we're running each OpenMP thread on a physical core

This needs to be ensured at two levels:

Slurm's salloc or srun

With the OpenMP runtime

This thread placement is also referred to as the OpenMP thread affinity

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

18 / 39

Thread/process affinity
Affinity at the Slurm level

Slurm sets defaults, but these are usually configured by the system administrators and can therefore be different on each system or even every Slurm partition

For example, -n 16, depending on this setup, may provide us with 16 cores (one CPU) or with 8 cores and two processes per core

Asking for 64 tasks (32 cores, 2 threads per core), ensures we have allocated all CPU resources of a node

But, running with OMP_NUM_THREADS=16 may do one of several things, e.g.:

Place 8 OpenMP threads on 8 cores of the first CPU and 8 threads on the 8 cores of the second CPU

Place 16 OpenMP threads on the 8 cores of one of the two CPUs, thus "oversubscribing" each core by 2

Place 16 OpenMP threads on the 16 cores of one of the two CPUs

×

19 / 39

Thread/process affinity
Affinity at the Slurm level

Slurm sets defaults, but these are usually configured by the system administrators and can therefore be different on each system or even every Slurm partition

For example, -n 16, depending on this setup, may provide us with 16 cores (one CPU) or with 8 cores and two processes per core

Asking for 64 tasks (32 cores, 2 threads per core), ensures we have allocated all CPU resources of a node

But, running with OMP_NUM_THREADS=16 may do one of several things, e.g.:

Place 8 OpenMP threads on 8 cores of the first CPU and 8 threads on the 8 cores of the second CPU

Place 16 OpenMP threads on the 8 cores of one of the two CPUs, thus "oversubscribing" each core by 2

Place 16 OpenMP threads on the 16 cores of one of the two CPUs

You should be in position to:

Specify the desired placement of OpenMP threads to cores

Verify that the actual placement is indeed the desired placement

×

19 / 39

Thread/process affinity
Getting CPU info

You can check which cores have been allocated and their placement with the hwloc tool

[ikoutsou@front02 ~]$ salloc -N 1 -n 1 --cpus-per-task=6 -p p100
[ikoutsou@cyc01 ~]$ module load gompi
[ikoutsou@cyc01 ~]$ hwloc-ls|more
[ikoutsou@cyc01 ex04]$ hwloc-ls|more
Machine (123GB total)
 Package L#0
 NUMANode L#0 (P#0 63GB)
 L3 L#0 (22MB)
 L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
 PU L#0 (P#0)
 PU L#1 (P#32)
 L2 L#1 (1024KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
 PU L#2 (P#1)
 PU L#3 (P#33)
 L2 L#2 (1024KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
 PU L#4 (P#2)
 PU L#5 (P#34)
 HostBridge
 ...

A NUMANode is one CPU socket. Each L# is a core.

Slurm gave us 3 cores on the same CPU

20 / 39

Thread/process affinity
Getting CPU info

We will reserve all cores on the node with --cpus-per-task=64 and determine the placement via OpenMP

21 / 39

Thread/process affinity
Getting CPU info

We will reserve all cores on the node with --cpus-per-task=64 and determine the placement via OpenMP

[ikoutsou@front02 ~]$ salloc -N 1 -n 1 --cpus-per-task=64 -p p100
[ikoutsou@cyc01 ex04]$ hwloc-ls|more
Machine (123GB total)
 Package L#0
 NUMANode L#0 (P#0 63GB)
 L3 L#0 (22MB)
 L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
 PU L#0 (P#0)
 PU L#1 (P#32)
 L2 L#1 (1024KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
 PU L#2 (P#1)
 PU L#3 (P#33)
 ...
 Package L#1
 NUMANode L#1 (P#1 60GB)
 L3 L#1 (22MB)
 L2 L#16 (1024KB) + L1d L#16 (32KB) + L1i L#16 (32KB) + Core L#16
 PU L#32 (P#16)
 PU L#33 (P#48)
 L2 L#17 (1024KB) + L1d L#17 (32KB) + L1i L#17 (32KB) + Core L#17
 PU L#34 (P#17)
 PU L#35 (P#49)

You should see two NUMANode, 16 cores for each, and each core has two PUs

21 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

22 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example A:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f96eefc77c0 affinity 0-63
level 1 thread 0x7f96ae60d700 affinity 0-63
level 1 thread 0x7f96ade0c700 affinity 0-63
level 1 thread 0x7f96ad60b700 affinity 0-63
nth = 4 t0 = 0.129383 sec, t1 = 0.035683 sec, diff z norm = 0.000000e+00, perf = 1.880688 Gflop/s

23 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example A:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f96eefc77c0 affinity 0-63
level 1 thread 0x7f96ae60d700 affinity 0-63
level 1 thread 0x7f96ade0c700 affinity 0-63
level 1 thread 0x7f96ad60b700 affinity 0-63
nth = 4 t0 = 0.129383 sec, t1 = 0.035683 sec, diff z norm = 0.000000e+00, perf = 1.880688 Gflop/s

No affinity specified, so all threads can take all slots from 0 to 63−

23 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example B:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f8a6703a7c0 affinity 0
level 1 thread 0x7f8a26680700 affinity 32
level 1 thread 0x7f8a25e7f700 affinity 1
level 1 thread 0x7f8a2567e700 affinity 33
 nth = 4 t0 = 0.130506 sec, t1 = 0.061074 sec, diff z norm = 0.000000e+00, perf = 1.098812 Gflop/s

24 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example B:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f8a6703a7c0 affinity 0
level 1 thread 0x7f8a26680700 affinity 32
level 1 thread 0x7f8a25e7f700 affinity 1
level 1 thread 0x7f8a2567e700 affinity 33
 nth = 4 t0 = 0.130506 sec, t1 = 0.061074 sec, diff z norm = 0.000000e+00, perf = 1.098812 Gflop/s

OpenMP threads bound to specific hardware thread

24 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example B:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f8a6703a7c0 affinity 0
level 1 thread 0x7f8a26680700 affinity 32
level 1 thread 0x7f8a25e7f700 affinity 1
level 1 thread 0x7f8a2567e700 affinity 33
 nth = 4 t0 = 0.130506 sec, t1 = 0.061074 sec, diff z norm = 0.000000e+00, perf = 1.098812 Gflop/s

OpenMP threads bound to specific hardware thread

The numbering follows hwloc-ls, the P# entry 0 and 32 are two hardware threads of the same core. Same for 1 and 33⇒

24 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example C:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_PLACES=cores
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fbb918d87c0 affinity 0,32
level 1 thread 0x7fbb50f1e700 affinity 1,33
level 1 thread 0x7fbb5071d700 affinity 2,34
level 1 thread 0x7fbb4ff1c700 affinity 3,35
nth = 4 t0 = 0.129853 sec, t1 = 0.035487 sec, diff z norm = 0.000000e+00, perf = 1.891086 Gflop/s

25 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example C:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_PLACES=cores
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fbb918d87c0 affinity 0,32
level 1 thread 0x7fbb50f1e700 affinity 1,33
level 1 thread 0x7fbb5071d700 affinity 2,34
level 1 thread 0x7fbb4ff1c700 affinity 3,35
nth = 4 t0 = 0.129853 sec, t1 = 0.035487 sec, diff z norm = 0.000000e+00, perf = 1.891086 Gflop/s

OpenMP threads are bound to cores, but can "float" between hardware threads of the same core

25 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example D:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:1"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f70941da7c0 affinity 0
level 1 thread 0x7f7053820700 affinity 1
level 1 thread 0x7f705301f700 affinity 2
level 1 thread 0x7f705281e700 affinity 3
nth = 4 t0 = 0.130987 sec, t1 = 0.036052 sec, diff z norm = 0.000000e+00, perf = 1.861447 Gflop/s

26 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example D:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:1"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f70941da7c0 affinity 0
level 1 thread 0x7f7053820700 affinity 1
level 1 thread 0x7f705301f700 affinity 2
level 1 thread 0x7f705281e700 affinity 3
nth = 4 t0 = 0.130987 sec, t1 = 0.036052 sec, diff z norm = 0.000000e+00, perf = 1.861447 Gflop/s

Explicitly specify the placement of OpenMP threads (therefore OMP_PROC_BIND is unnecessary)

26 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example E:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:8"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fe4deb797c0 affinity 0
level 1 thread 0x7fe49e1bf700 affinity 8
level 1 thread 0x7fe49d9be700 affinity 16
level 1 thread 0x7fe49d1bd700 affinity 24
nth = 4 t0 = 0.131311 sec, t1 = 0.035607 sec, diff z norm = 0.000000e+00, perf = 1.884705 Gflop/s

27 / 39

Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example E:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:8"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fe4deb797c0 affinity 0
level 1 thread 0x7fe49e1bf700 affinity 8
level 1 thread 0x7fe49d9be700 affinity 16
level 1 thread 0x7fe49d1bd700 affinity 24
nth = 4 t0 = 0.131311 sec, t1 = 0.035607 sec, diff z norm = 0.000000e+00, perf = 1.884705 Gflop/s

Two OpenMP threads on one CPU socket and two on the other

27 / 39

Performance analysis
Rerun xdoty.c and axpy.c

You can use your own from last lesson or take them from /onyx/data/sds406f24/l04/ex01/

28 / 39

Performance analysis
Rerun xdoty.c and axpy.c

You can use your own from last lesson or take them from /onyx/data/sds406f24/l04/ex01/

A subtle difference is that axpy now follows: y ← a ⋅ x + y

28 / 39

Performance analysis
Rerun xdoty.c and axpy.c

You can use your own from last lesson or take them from /onyx/data/sds406f24/l04/ex01/

A subtle difference is that axpy now follows:

Run again for 1 to 16 OpenMP threads. Ensure all physical CPU cores are on the same CPU socket. And similarly for xdoty

y ← a ⋅ x + y

28 / 39

Performance analysis
Rerun xdoty.c and axpy.c

You can use your own from last lesson or take them from /onyx/data/sds406f24/l04/ex01/

A subtle difference is that axpy now follows:

Run again for 1 to 16 OpenMP threads. Ensure all physical CPU cores are on the same CPU socket. And similarly for xdoty

[ikoutsou@front02 l04]$ for((n=1; n<=16; n++))
> do
> export OMP_PLACES="{0}:$n:1"
> export OMP_NUM_THREADS=$n
> srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
> done
nth = 1 t0 = 0.033659 sec, t1 = 0.036666 sec, diff z norm = 0.000000e+00, perf = 1.830279 Gflop/s
nth = 2 t0 = 0.033601 sec, t1 = 0.019508 sec, diff z norm = 0.000000e+00, perf = 3.440089 Gflop/s
nth = 3 t0 = 0.033593 sec, t1 = 0.015206 sec, diff z norm = 0.000000e+00, perf = 4.413355 Gflop/s
nth = 4 t0 = 0.033526 sec, t1 = 0.014653 sec, diff z norm = 0.000000e+00, perf = 4.579882 Gflop/s
nth = 5 t0 = 0.033566 sec, t1 = 0.013098 sec, diff z norm = 0.000000e+00, perf = 5.123596 Gflop/s
nth = 6 t0 = 0.033436 sec, t1 = 0.012727 sec, diff z norm = 0.000000e+00, perf = 5.272943 Gflop/s
nth = 7 t0 = 0.033536 sec, t1 = 0.012487 sec, diff z norm = 0.000000e+00, perf = 5.374327 Gflop/s
nth = 8 t0 = 0.033525 sec, t1 = 0.013092 sec, diff z norm = 0.000000e+00, perf = 5.125928 Gflop/s
nth = 9 t0 = 0.033648 sec, t1 = 0.012486 sec, diff z norm = 0.000000e+00, perf = 5.374737 Gflop/s
nth = 10 t0 = 0.033825 sec, t1 = 0.012753 sec, diff z norm = 0.000000e+00, perf = 5.262198 Gflop/s
nth = 11 t0 = 0.033825 sec, t1 = 0.012249 sec, diff z norm = 0.000000e+00, perf = 5.478725 Gflop/s
nth = 12 t0 = 0.033886 sec, t1 = 0.012366 sec, diff z norm = 0.000000e+00, perf = 5.426861 Gflop/s
nth = 13 t0 = 0.033876 sec, t1 = 0.012259 sec, diff z norm = 0.000000e+00, perf = 5.474250 Gflop/s
nth = 14 t0 = 0.033799 sec, t1 = 0.012575 sec, diff z norm = 0.000000e+00, perf = 5.336727 Gflop/s
nth = 15 t0 = 0.034108 sec, t1 = 0.012522 sec, diff z norm = 0.000000e+00, perf = 5.359182 Gflop/s
nth = 16 t0 = 0.034084 sec, t1 = 0.014791 sec, diff z norm = 0.000000e+00, perf = 4.537138 Gflop/s

y ← a ⋅ x + y

28 / 39

axpy [Gflop/s] xdoty [Gflop/s]
1 1.830 1.541
2 3.440 2.985
3 4.413 4.312
4 4.580 5.479
5 5.124 6.652
6 5.273 7.724
7 5.374 8.553
8 5.126 8.609
9 5.375 8.990

10 5.262 8.974
11 5.479 8.914
12 5.427 8.819
13 5.474 8.756
14 5.337 8.765
15 5.359 8.638
16 4.537 8.298

OpenMP and controlling for affinity

nOMP

29 / 39

axpy [Gflop/s] xdoty [Gflop/s]
1 1.830 1.541
2 3.440 2.985
3 4.413 4.312
4 4.580 5.479
5 5.124 6.652
6 5.273 7.724
7 5.374 8.553
8 5.126 8.609
9 5.375 8.990

10 5.262 8.974
11 5.479 8.914
12 5.427 8.819
13 5.474 8.756
14 5.337 8.765
15 5.359 8.638
16 4.537 8.298

OpenMP and controlling for affinity

nOMP

29 / 39

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

30 / 39

Take xdoty.c and axpy.c from /onyx/data/sds406f24/l04/ex01/ and modify them to report
sustained bandwidth

Run again for 1 to 16 OpenMP threads and plot versus for both programs on
the same plot

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

βIO nOMP

30 / 39

Take xdoty.c and axpy.c from /onyx/data/sds406f24/l04/ex01/ and modify them to report
sustained bandwidth

Run again for 1 to 16 OpenMP threads and plot versus for both programs on
the same plot

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

βIO nOMP

30 / 39

Take xdoty.c and axpy.c from /onyx/data/sds406f24/l04/ex01/ and modify them to report
sustained bandwidth

Run again for 1 to 16 OpenMP threads and plot versus for both programs on
the same plot

Percentage of peak?

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

βIO nOMP

30 / 39

Take xdoty.c and axpy.c from /onyx/data/sds406f24/l04/ex01/ and modify them to report
sustained bandwidth

Run again for 1 to 16 OpenMP threads and plot versus for both programs on
the same plot

Percentage of peak?

Compare with per socket theoretical peak of 80 GBytes/s

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

βIO nOMP

∼

30 / 39

Performance analysis
Another example using axpy():

← a ⋅ + i = 0, . . . , L − 1yi xi yi

31 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

← a ⋅ + i = 0, . . . , L − 1yi xi yi

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

← a ⋅ + i = 0, . . . , L − 1yi xi yi

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

← a ⋅ + i = 0, . . . , L − 1yi xi yi

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

No checking of result, i.e. no comparing of z0[] and z1[]

← a ⋅ + i = 0, . . . , L − 1yi xi yi

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

No checking of result, i.e. no comparing of z0[] and z1[]

Does y[:] = a*x[:] + y[:] repeatidly until three seconds have elapsed

← a ⋅ + i = 0, . . . , L − 1yi xi yi

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

No checking of result, i.e. no comparing of z0[] and z1[]

Does y[:] = a*x[:] + y[:] repeatidly until three seconds have elapsed

double t0 = stop_watch(0);
int niter = 0;
for(; stop_watch(t0) < 3; niter++) {
 axpy(n, a, x, y);
}
t0 = stop_watch(t0)/niter;

← a ⋅ + i = 0, . . . , L − 1yi xi yi

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

No checking of result, i.e. no comparing of z0[] and z1[]

Does y[:] = a*x[:] + y[:] repeatidly until three seconds have elapsed

double t0 = stop_watch(0);
int niter = 0;
for(; stop_watch(t0) < 3; niter++) {
 axpy(n, a, x, y);
}
t0 = stop_watch(t0)/niter;

 Warm-up: Add an OpenMP pragma to parallelize the loop over n in axpy()

← a ⋅ + i = 0, . . . , L − 1yi xi yi

→

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

No checking of result, i.e. no comparing of z0[] and z1[]

Does y[:] = a*x[:] + y[:] repeatidly until three seconds have elapsed

double t0 = stop_watch(0);
int niter = 0;
for(; stop_watch(t0) < 3; niter++) {
 axpy(n, a, x, y);
}
t0 = stop_watch(t0)/niter;

 Warm-up: Add an OpenMP pragma to parallelize the loop over n in axpy()

 Warm-up: Correct the calculation of and

← a ⋅ + i = 0, . . . , L − 1yi xi yi

→

→ βfp βIO

32 / 39

Performance analysis
Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

This version is slightly different to what we have been using so far

Carries out y[i] = a*x[i] + y[i], i.e. no z[] array

No checking of result, i.e. no comparing of z0[] and z1[]

Does y[:] = a*x[:] + y[:] repeatidly until three seconds have elapsed

double t0 = stop_watch(0);
int niter = 0;
for(; stop_watch(t0) < 3; niter++) {
 axpy(n, a, x, y);
}
t0 = stop_watch(t0)/niter;

 Warm-up: Add an OpenMP pragma to parallelize the loop over n in axpy()

 Warm-up: Correct the calculation of and

 Warm-up: Compile and run once using and 2 OpenMP thread

← a ⋅ + i = 0, . . . , L − 1yi xi yi

→

→ βfp βIO

→ n = 10242

32 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

← a ⋅ + i = 0, . . . , L − 1yi xi yi

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

← a ⋅ + i = 0, . . . , L − 1yi xi yi

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

← a ⋅ + i = 0, . . . , L − 1yi xi yi

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

Your task now

Edit the incomplete run.sh

← a ⋅ + i = 0, . . . , L − 1yi xi yi

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

Your task now

Edit the incomplete run.sh

Loop over for values =128, 256, ..., 512 1024 (double each time)

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L L × 2

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

Your task now

Edit the incomplete run.sh

Loop over for values =128, 256, ..., 512 1024 (double each time)

Loop over for values =1, 2, 4, ..., 16 (double each time)

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L L × 2

nOMP nOMP

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

Your task now

Edit the incomplete run.sh

Loop over for values =128, 256, ..., 512 1024 (double each time)

Loop over for values =1, 2, 4, ..., 16 (double each time)

Plot versus . Use different colors for different

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L L × 2

nOMP nOMP

βIO L nOMP

33 / 39

Performance analysis
Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth = 2 t0 = 3.678e-04 sec L = 1048576 niter = 8158 beta_fp = 5.702e+00 Gflop/s beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

Your task now

Edit the incomplete run.sh

Loop over for values =128, 256, ..., 512 1024 (double each time)

Loop over for values =1, 2, 4, ..., 16 (double each time)

Plot versus . Use different colors for different
 best use log-scale on the x-axis

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L L × 2

nOMP nOMP

βIO L nOMP
→

33 / 39

Performance analysis

34 / 39

Performance analysis

Dashed horizontal line is theoretical peak bandwidth (single socket) of 83 GBytes/s

34 / 39

Performance analysis

Dashed horizontal line is theoretical peak bandwidth (single socket) of 83 GBytes/s

What is happening between and ?L = 215 220

34 / 39

Performance analysis
axpy:

← a ⋅ + i = 0, . . . , L − 1yi xi yi

35 / 39

Performance analysis
axpy:

Smaller data is repeatedly read from cache high bandwidth

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L⇒ ⇒ ≫ γIO

36 / 39

Performance analysis
axpy:

Smaller data is repeatedly read from cache high bandwidth

Increasing the number of cores used increases the bandwidth that can be sustained

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L⇒ ⇒ ≫ γIO

36 / 39

Performance analysis
axpy:

Smaller data is repeatedly read from cache high bandwidth

Increasing the number of cores used increases the bandwidth that can be sustained

For that fits in a single NUMA-node RAM (i.e. 64 GBytes) peak bandwidth is 83 GBytes/s

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L⇒ ⇒ ≫ γIO

L < ⇒

36 / 39

Performance analysis
axpy:

What is the cache size?

← a ⋅ + i = 0, . . . , L − 1yi xi yi

37 / 39

Performance analysis
axpy:

What is the cache size?

22 MBytes (for each socket)

See e.g. /proc/cpuinfo or hwloc-ls

← a ⋅ + i = 0, . . . , L − 1yi xi yi

37 / 39

Performance analysis
axpy:

What is the cache size?

22 MBytes (for each socket)

See e.g. /proc/cpuinfo or hwloc-ls

For which value of do we reach the cache size limit

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L

37 / 39

Performance analysis
axpy:

What is the cache size?

22 MBytes (for each socket)

See e.g. /proc/cpuinfo or hwloc-ls

For which value of do we reach the cache size limit

Storage requirements: (one x[] and one y[])

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L
w ⋅ 2 ⋅ L

37 / 39

Performance analysis
axpy:

What is the cache size?

22 MBytes (for each socket)

See e.g. /proc/cpuinfo or hwloc-ls

For which value of do we reach the cache size limit

Storage requirements: (one x[] and one y[])

=sizeof(double)=8 Bytes

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L
w ⋅ 2 ⋅ L

w

37 / 39

Performance analysis
axpy:

What is the cache size?

22 MBytes (for each socket)

See e.g. /proc/cpuinfo or hwloc-ls

For which value of do we reach the cache size limit

Storage requirements: (one x[] and one y[])

=sizeof(double)=8 Bytes

 =22 MBytes / (8 Bytes) 2

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L
w ⋅ 2 ⋅ L

w

⇒Lc ×2 ≃ 20

37 / 39

Performance analysis

38 / 39

Performance analysis

Dashed vertical line indicates , i.e. the largest value of for which arrays x[] and y[] still fit in the L3 cache of 22 MBytesLc L

38 / 39

Optimization
Cache locality

The axpy analysis we just went through is a simple case that helps demonstrate the effect of "staying in cache" or "dropping out of cache"

39 / 39

Optimization
Cache locality

The axpy analysis we just went through is a simple case that helps demonstrate the effect of "staying in cache" or "dropping out of cache"

For axpy, there is not much to be done in terms of data-layout transformations that can help achieve better so-called "data locality"

39 / 39

Optimization
Cache locality

The axpy analysis we just went through is a simple case that helps demonstrate the effect of "staying in cache" or "dropping out of cache"

For axpy, there is not much to be done in terms of data-layout transformations that can help achieve better so-called "data locality"

One good example though that can help demonstrate this effect it the matrix-matrix multiplication

39 / 39

