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Outline for today
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Review of OpenMP examples; axpy and xdoty

Performance analysis and optimization

Understanding of program performance

Understanding of hardware characteristics in terms of performance

Understanding of potential performance of a program given the hardware characteristics

Optimization steps to approach potential performance
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If the 2*n flops require t1 seconds, the floating point rate is: 2*n/t1 flops/s

Equivalently 2*n/t1/1e9 Gflops/s

double p = 2.0*n/t1/1e9;
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For each iteration, i.e. for each element i
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OpenMP for linear algebra
[ikoutsou@front02 ex03]$ for ((n=1; n<=16; n++))
> do OMP_NUM_THREADS=${n} srun -N 1 -p p100 -n 1 --cpus-per-task=64 ./axpy $((32*1024*1024))
> done
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axpy [Gflop/s] xdoty [Gflop/s]
1 0.509 0.791
2 0.999 1.564
3 1.443 2.226
4 1.890 2.907
5 2.294 3.594
6 2.705 4.268
7 3.000 4.922
8 3.102 5.465
9 3.247 5.651

10 3.179 6.183
11 3.396 6.660
12 3.404 7.039
13 3.334 7.057
14 3.353 7.534
15 3.276 7.953
16 3.169 7.253
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The theoretical, highest number of bytes that can be read/written
from/to some level of memory (L1,2,3 cache, RAM, etc.)

For RAM: data rate, channels, ranks, banks

When optimizing, it is important to have these numbers in mind for the machine you're running on
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P100 GPU nodes
On Linux, you can obtain processor details via cat /proc/cpuinfo:

processor       : 0
vendor_id       : GenuineIntel
cpu family      : 6
model           : 85
model name      : Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
...
cpu MHz         : 2100.000
cache size      : 22528 KB
physical id     : 0
siblings        : 32
core id         : 0
cpu cores       : 16
...
flags           : fpu vme de pse tsc msr pae mce cx8 apic ...

Look up the processor on https://ark.intel.com
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Peak performance
Peak Floating Point rate

16-cores per socket, 2 sockets per node, clock: 2.1 GHz

Best case: two 512-bit multiply-and-add per cycle (AVX-512 FMA)

In double precision: 2 (8 mul + 8 add) per cycle = 32 flop/cycle

Therefore: 2.1x10  cycles/s  32 flop/cycle = 67.2 Gflop/s per core

1,075.2 Gflop/s per socket

Peak BW

Up to 6 channels per socket  128 GB/s to RAM per socket

Assuming all channels filled, two sockets  256 GB/s
 p100 nodes: 4 channels per socket filled

Theoretical peak 80 GBytes/s per socket

Some (semi-)standard tools

On Linux, you can obtain processor details via cat /proc/cpuinfo.

You can obtain topology and memory info e.g. hwloc, dmidecode (latter requires access to /dev/mem)

×
9 ×

⇒
⇒

→
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Computational kernels
Sustained performance

Sustained FP-rate: the measured, average number of floating point operations carried out by the kernel per unit time

add, sub, and mul count as 1 flop

dev, sqrt, sin, etc. count  2 flops. Depends on architecture

Count number of flops in kernel and divide by runtime

Alternatively, or for more complex codes, use performance counters

In our examples we will see cases of kernels where the flops are countable

Sustained BW: the measured, average bytes read/written from main memory per unit time

As in the case of FP-rate, count bytes needed to be read and bytes needed to be written to and from RAM and divide by run time

Maximum data reuse assumption: "local" data, once read from RAM, never needs to be re-read

≥
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double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double a;

/* ...  Some initialization of a, x, and y
 *  omitted here ...
 */

for(int i=0; i<L; i++) {
  y[i] = a*x[i] + y[i];
}

Maximum data reuse
A (hopefully) familiar example:

, 

It's implementation in C:

= a ⋅ +yi xi yi i = 0, . . . , L − 1
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Write an element of  once

: word-length in bytes, e.g.

 bytes for single precision,

 bytes for double, etc.

How about the memory accesses of ?

Maximum data reuse assumption:  is read only in the first iteration and
remains in cache for all following iterations

Maximum data reuse
A (hopefully) familiar example:

, 

It's implementation in C:

= a ⋅ +yi xi yi i = 0, . . . , L − 1
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= w ⋅ (3 ⋅ L)NIO

y
x
y

w
w = 4
w = 8

a

a

11 / 39



Maximum data reuse
Another example:

It's implementation in C:

double y[L]; /* Or malloc() */
double x[L]; /* Or malloc() */
double sigma;

/* ...  Some initialization of sigma, x, and y omitted here ...
 */

for(int i=1; i<L; i++) {
  y[i] = sigma*(x[i] - x[i-1]);
}

Number of flops

= σ ⋅ ( − ), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp
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It's implementation in C:
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 */
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Number of bytes of I/O

In each iteration, read two elements of  and write one of 

But, one element of  has been read during previous iteration
 

= σ ⋅ ( − ), i = 1, . . . , L − 1yi xi xi−1

= (L − 1) ⋅ 2Nfp

L ≫ ≃ L ⋅ 2Nfp

x y
x

⇒ = w ⋅ (2 ⋅ (L − 1) + 1) ≃ w ⋅ 2 ⋅ LNIO
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Maximum data reuse
For counting , looking at the iteration unrolled may help to reveal data reuse

y[  1] = sigma*(x[  1] - x[  0]);
y[  2] = sigma*(x[  2] - x[  1]);
y[  3] = sigma*(x[  3] - x[  2]);
...
y[L-1] = sigma*(x[L-1] - x[L-2]);

sigma and elements of x[] are required multiple times. However we assume they only need to be read once.

NIO
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sigma and elements of x[] are required multiple times. However we assume they only need to be read once.

Given some measurement of the run-time 

FP-rate: 

IO-rate: 

This motivates defining their ratio, which is referred to as intensity
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Similarly to , we can define the machine flop/byte ratio (
)

E.g. for the nodes of the p100 partition: 

Intensities
Computational kernel intensity

Ratio of kernel floating point operations to bytes of I/O

For our previous example:

Note how the problem size  drops out  constant  irrespective of problem size

E.g. for double precision ( ), =0.125 flops/byte

Machine flop/byte ratio

= = = 1/wIk
Nfp
NIO

2L
2wL

L ⇒ Ik
w = 8 Ik

Ik
Im

=Im
γfp
γIO

= 8.4Im
flop
byte
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Intensities
Balance between kernel / hardware intensities

: Kernel is "compute-bound" on this architecture. Higher  would lead to higher performance, but higher  would not necessarily.

: Kernel is "bandwidth-" or "memory-bound" on this architecture. Higher  would lead to higher performance, but higher  would not
necessarily.

: Kernel is balanced on this architecture. Ideal situation.

For the example we have been studying

  the kernel is memory-bound

Note the assumptions that enter  and 

 considers all operations can be a sequence of multiply-and-add

 assumes maximum data reuse

 constant if problem size  drops out

≫Ik Im γfp γIO
≪Ik Im γIO γfp

≃Ik Im

≪Ik Im⇒

Ik Im
γfp
βIO
Ik L
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double C[M][K];
double A[M][N];
double B[N][K];

for(int m=0; m<M; m++) {
  for(int k=0; k<K; k++) {          
    C[m][k] = 0;
    for(int n=0; n<N; n++) {
      C[m][k] += A[m][n]*B[n][k];
    }
  }
}

Kernel computational intensity
Another example: matrix-matrix multiplication

Consider a matrix-matrix multiplication: = ⋅CM×K AM×N BN×K
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E.g. for a square problem , 

Kernel computational intensity
Another example: matrix-matrix multiplication

Consider a matrix-matrix multiplication: = ⋅CM×K AM×N BN×K

= 2 ⋅M ⋅ K ⋅ NNfp

= w ⋅ (M ⋅ K +M ⋅ N+N ⋅ K)NIO

=Ik 2
w

1

+ +1
M

1
N

1
K

M = N = K ⇒ =Ik 2
3
N
w
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    C[m][k] = 0;
    for(int n=0; n<N; n++) {
      C[m][k] += A[m][n]*B[n][k];
    }
  }
}

E.g. for a square problem , 

This is an example of a kernel where  depends on the problem size.

On a given architecture with , the kernel transitions from bandwidth-bound to compute-bound as  increases.

For double precision (  = 8 bytes), the kernel is balanced when .

Kernel computational intensity
Another example: matrix-matrix multiplication

Consider a matrix-matrix multiplication: = ⋅CM×K AM×N BN×K

= 2 ⋅M ⋅ K ⋅ NNfp

= w ⋅ (M ⋅ K +M ⋅ N+N ⋅ K)NIO

=Ik 2
w

1

+ +1
M

1
N

1
K

M = N = K ⇒ =Ik 2
3
N
w

Ik

Im N

w N ≃ 100
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Optimization
Given a code you wish to optimize, for an architecture with 

What is  and  and what is the resulting ?

Is the kernel memory or compute bound on this architecture?

What do you obtain for  and 

For this one requires measuring the performance on the targeted architecture

What are the ratios  and ?

These are questions you need to answer before considering optimization

After answering the above, we can start considering targeted optimizations for our kernel on the given machine

If your kernel is memory-bound, we should be trying to optimize for memory I/O. Ideally we try to achieve a .

If your kernel is compute-bound, we should be trying to optimize for a higher FP-rate. Ideally we try to achieve a .

Im
Nfp NIO Ik

βfp βIO

βfp
γfp

βIO
γIO

→ 1βIO
γIO

→ 1
βfp
γfp
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Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi
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[ikoutsou@front02 l04]$ cc -O3 -fopenmp -o axpy axpy.c

We would also like to ensure we're running each OpenMP thread on a physical core

This needs to be ensured at two levels:

Slurm's salloc or srun

With the OpenMP runtime

This thread placement is also referred to as the OpenMP thread affinity
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Thread/process affinity
Affinity at the Slurm level

Slurm sets defaults, but these are usually configured by the system administrators and can therefore be different on each system or even every Slurm partition

For example, -n 16, depending on this setup, may provide us with 16 cores (one CPU) or with 8 cores and two processes per core

Asking for 64 tasks (32 cores, 2 threads per core), ensures we have allocated all CPU resources of a node

But, running with OMP_NUM_THREADS=16 may do one of several things, e.g.:

Place 8 OpenMP threads on 8 cores of the first CPU and 8 threads on the 8 cores of the second CPU

Place 16 OpenMP threads on the 8 cores of one of the two CPUs, thus "oversubscribing" each core by 2

Place 16 OpenMP threads on the 16 cores of one of the two CPUs

×
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Affinity at the Slurm level

Slurm sets defaults, but these are usually configured by the system administrators and can therefore be different on each system or even every Slurm partition

For example, -n 16, depending on this setup, may provide us with 16 cores (one CPU) or with 8 cores and two processes per core

Asking for 64 tasks (32 cores, 2 threads per core), ensures we have allocated all CPU resources of a node

But, running with OMP_NUM_THREADS=16 may do one of several things, e.g.:

Place 8 OpenMP threads on 8 cores of the first CPU and 8 threads on the 8 cores of the second CPU

Place 16 OpenMP threads on the 8 cores of one of the two CPUs, thus "oversubscribing" each core by 2

Place 16 OpenMP threads on the 16 cores of one of the two CPUs

You should be in position to:

Specify the desired placement of OpenMP threads to cores

Verify that the actual placement is indeed the desired placement

×
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Thread/process affinity
Getting CPU info

You can check which cores have been allocated and their placement with the hwloc tool

[ikoutsou@front02 ~]$ salloc -N 1 -n 1 --cpus-per-task=6 -p p100
[ikoutsou@cyc01 ~]$ module load gompi
[ikoutsou@cyc01 ~]$ hwloc-ls|more
[ikoutsou@cyc01 ex04]$ hwloc-ls|more
Machine (123GB total)
  Package L#0
    NUMANode L#0 (P#0 63GB)
    L3 L#0 (22MB)
      L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
        PU L#0 (P#0)
        PU L#1 (P#32)
      L2 L#1 (1024KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
        PU L#2 (P#1)
        PU L#3 (P#33)
      L2 L#2 (1024KB) + L1d L#2 (32KB) + L1i L#2 (32KB) + Core L#2
        PU L#4 (P#2)
        PU L#5 (P#34)
    HostBridge
    ...

A NUMANode is one CPU socket. Each L# is a core.

Slurm gave us 3 cores on the same CPU
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Thread/process affinity
Getting CPU info

We will reserve all cores on the node with --cpus-per-task=64 and determine the placement via OpenMP
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Thread/process affinity
Getting CPU info

We will reserve all cores on the node with --cpus-per-task=64 and determine the placement via OpenMP

[ikoutsou@front02 ~]$ salloc -N 1 -n 1 --cpus-per-task=64 -p p100
[ikoutsou@cyc01 ex04]$ hwloc-ls|more
Machine (123GB total)
  Package L#0
    NUMANode L#0 (P#0 63GB)
    L3 L#0 (22MB)
      L2 L#0 (1024KB) + L1d L#0 (32KB) + L1i L#0 (32KB) + Core L#0
        PU L#0 (P#0)
        PU L#1 (P#32)
      L2 L#1 (1024KB) + L1d L#1 (32KB) + L1i L#1 (32KB) + Core L#1
        PU L#2 (P#1)
        PU L#3 (P#33)
  ...        
  Package L#1
    NUMANode L#1 (P#1 60GB)
    L3 L#1 (22MB)
      L2 L#16 (1024KB) + L1d L#16 (32KB) + L1i L#16 (32KB) + Core L#16
        PU L#32 (P#16)
        PU L#33 (P#48)
      L2 L#17 (1024KB) + L1d L#17 (32KB) + L1i L#17 (32KB) + Core L#17
        PU L#34 (P#17)
        PU L#35 (P#49)

You should see two NUMANode, 16 cores for each, and each core has two PUs
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example A:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_NUM_THREADS=4 
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f96eefc77c0 affinity 0-63
level 1 thread 0x7f96ae60d700 affinity 0-63
level 1 thread 0x7f96ade0c700 affinity 0-63
level 1 thread 0x7f96ad60b700 affinity 0-63
nth =  4   t0 = 0.129383 sec, t1 = 0.035683 sec, diff z norm = 0.000000e+00, perf = 1.880688 Gflop/s
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example A:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_NUM_THREADS=4 
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f96eefc77c0 affinity 0-63
level 1 thread 0x7f96ae60d700 affinity 0-63
level 1 thread 0x7f96ade0c700 affinity 0-63
level 1 thread 0x7f96ad60b700 affinity 0-63
nth =  4   t0 = 0.129383 sec, t1 = 0.035683 sec, diff z norm = 0.000000e+00, perf = 1.880688 Gflop/s

No affinity specified, so all threads can take all slots  from 0 to 63−
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example B:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f8a6703a7c0 affinity 0
level 1 thread 0x7f8a26680700 affinity 32
level 1 thread 0x7f8a25e7f700 affinity 1
level 1 thread 0x7f8a2567e700 affinity 33
 nth =  4   t0 = 0.130506 sec, t1 = 0.061074 sec, diff z norm = 0.000000e+00, perf = 1.098812 Gflop/s
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[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f8a6703a7c0 affinity 0
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OpenMP threads bound to specific hardware thread
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example B:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f8a6703a7c0 affinity 0
level 1 thread 0x7f8a26680700 affinity 32
level 1 thread 0x7f8a25e7f700 affinity 1
level 1 thread 0x7f8a2567e700 affinity 33
 nth =  4   t0 = 0.130506 sec, t1 = 0.061074 sec, diff z norm = 0.000000e+00, perf = 1.098812 Gflop/s

OpenMP threads bound to specific hardware thread

The numbering follows hwloc-ls, the P# entry  0 and 32 are two hardware threads of the same core. Same for 1 and 33⇒
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example C:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_PLACES=cores
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fbb918d87c0 affinity 0,32
level 1 thread 0x7fbb50f1e700 affinity 1,33
level 1 thread 0x7fbb5071d700 affinity 2,34
level 1 thread 0x7fbb4ff1c700 affinity 3,35
nth =  4   t0 = 0.129853 sec, t1 = 0.035487 sec, diff z norm = 0.000000e+00, perf = 1.891086 Gflop/s
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example C:

[ikoutsou@front02 l04]$ export OMP_PROC_BIND=true; export OMP_NUM_THREADS=4; export OMP_DISPLAY_AFFINITY=true
[ikoutsou@front02 l04]$ export OMP_PLACES=cores
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fbb918d87c0 affinity 0,32
level 1 thread 0x7fbb50f1e700 affinity 1,33
level 1 thread 0x7fbb5071d700 affinity 2,34
level 1 thread 0x7fbb4ff1c700 affinity 3,35
nth =  4   t0 = 0.129853 sec, t1 = 0.035487 sec, diff z norm = 0.000000e+00, perf = 1.891086 Gflop/s

OpenMP threads are bound to cores, but can "float" between hardware threads of the same core
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example D:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:1"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f70941da7c0 affinity 0
level 1 thread 0x7f7053820700 affinity 1
level 1 thread 0x7f705301f700 affinity 2
level 1 thread 0x7f705281e700 affinity 3
nth =  4   t0 = 0.130987 sec, t1 = 0.036052 sec, diff z norm = 0.000000e+00, perf = 1.861447 Gflop/s
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example D:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:1"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7f70941da7c0 affinity 0
level 1 thread 0x7f7053820700 affinity 1
level 1 thread 0x7f705301f700 affinity 2
level 1 thread 0x7f705281e700 affinity 3
nth =  4   t0 = 0.130987 sec, t1 = 0.036052 sec, diff z norm = 0.000000e+00, perf = 1.861447 Gflop/s

Explicitly specify the placement of OpenMP threads (therefore OMP_PROC_BIND is unnecessary)
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example E:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:8"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fe4deb797c0 affinity 0
level 1 thread 0x7fe49e1bf700 affinity 8
level 1 thread 0x7fe49d9be700 affinity 16
level 1 thread 0x7fe49d1bd700 affinity 24
nth =  4   t0 = 0.131311 sec, t1 = 0.035607 sec, diff z norm = 0.000000e+00, perf = 1.884705 Gflop/s
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Thread/process affinity
Affinity at the OpenMP level

Two environment variables:

OMP_PLACES: Specify what a "slot" is for OpenMP. Options are sockets, cores, threads

You can also specify which slots to use for OpenMP. I.e., which cores, which threads, which sockets

OMP_PROC_BIND: Specify whether OpenMP threads are allowed to move between PLACES. OMP_PROC_BIND=false means don't bind, i.e. allow OpenMP
threads to move. In addition to true, you can specify:

spread: Spread out consecutive OpenMP threads over PLACES

close: Keep consecutive OpenMP threads over PLACES close

An additional environment variables allows us to check where the OpenMP threads are placed:

OMP_DISPLAY_AFFINITY: prints out numbers indicating the hardware threads

Example E:

[ikoutsou@front02 l04]$ export OMP_DISPLAY_AFFINITY=true; export OMP_NUM_THREADS=4
[ikoutsou@front02 l04]$ export OMP_PLACES="{0}:4:8"
[ikoutsou@front02 l04]$ srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
level 1 thread 0x7fe4deb797c0 affinity 0
level 1 thread 0x7fe49e1bf700 affinity 8
level 1 thread 0x7fe49d9be700 affinity 16
level 1 thread 0x7fe49d1bd700 affinity 24
nth =  4   t0 = 0.131311 sec, t1 = 0.035607 sec, diff z norm = 0.000000e+00, perf = 1.884705 Gflop/s

Two OpenMP threads on one CPU socket and two on the other
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Performance analysis
Rerun xdoty.c and axpy.c

You can use your own from last lesson or take them from /onyx/data/sds406f24/l04/ex01/
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Performance analysis
Rerun xdoty.c and axpy.c

You can use your own from last lesson or take them from /onyx/data/sds406f24/l04/ex01/

A subtle difference is that axpy now follows: 

Run again for 1 to 16 OpenMP threads. Ensure all physical CPU cores are on the same CPU socket. And similarly for xdoty

[ikoutsou@front02 l04]$ for((n=1; n<=16; n++))
> do
> export OMP_PLACES="{0}:$n:1"
> export OMP_NUM_THREADS=$n
> srun -N 1 -n 1 --cpus-per-task=64 -p p100 ./axpy $((32*1024*1024))
> done
nth =  1   t0 = 0.033659 sec, t1 = 0.036666 sec, diff z norm = 0.000000e+00, perf = 1.830279 Gflop/s
nth =  2   t0 = 0.033601 sec, t1 = 0.019508 sec, diff z norm = 0.000000e+00, perf = 3.440089 Gflop/s
nth =  3   t0 = 0.033593 sec, t1 = 0.015206 sec, diff z norm = 0.000000e+00, perf = 4.413355 Gflop/s
nth =  4   t0 = 0.033526 sec, t1 = 0.014653 sec, diff z norm = 0.000000e+00, perf = 4.579882 Gflop/s
nth =  5   t0 = 0.033566 sec, t1 = 0.013098 sec, diff z norm = 0.000000e+00, perf = 5.123596 Gflop/s
nth =  6   t0 = 0.033436 sec, t1 = 0.012727 sec, diff z norm = 0.000000e+00, perf = 5.272943 Gflop/s
nth =  7   t0 = 0.033536 sec, t1 = 0.012487 sec, diff z norm = 0.000000e+00, perf = 5.374327 Gflop/s
nth =  8   t0 = 0.033525 sec, t1 = 0.013092 sec, diff z norm = 0.000000e+00, perf = 5.125928 Gflop/s
nth =  9   t0 = 0.033648 sec, t1 = 0.012486 sec, diff z norm = 0.000000e+00, perf = 5.374737 Gflop/s
nth = 10   t0 = 0.033825 sec, t1 = 0.012753 sec, diff z norm = 0.000000e+00, perf = 5.262198 Gflop/s
nth = 11   t0 = 0.033825 sec, t1 = 0.012249 sec, diff z norm = 0.000000e+00, perf = 5.478725 Gflop/s
nth = 12   t0 = 0.033886 sec, t1 = 0.012366 sec, diff z norm = 0.000000e+00, perf = 5.426861 Gflop/s
nth = 13   t0 = 0.033876 sec, t1 = 0.012259 sec, diff z norm = 0.000000e+00, perf = 5.474250 Gflop/s
nth = 14   t0 = 0.033799 sec, t1 = 0.012575 sec, diff z norm = 0.000000e+00, perf = 5.336727 Gflop/s
nth = 15   t0 = 0.034108 sec, t1 = 0.012522 sec, diff z norm = 0.000000e+00, perf = 5.359182 Gflop/s
nth = 16   t0 = 0.034084 sec, t1 = 0.014791 sec, diff z norm = 0.000000e+00, perf = 4.537138 Gflop/s

y ← a ⋅ x + y
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axpy [Gflop/s] xdoty [Gflop/s]
1 1.830 1.541
2 3.440 2.985
3 4.413 4.312
4 4.580 5.479
5 5.124 6.652
6 5.273 7.724
7 5.374 8.553
8 5.126 8.609
9 5.375 8.990

10 5.262 8.974
11 5.479 8.914
12 5.427 8.819
13 5.474 8.756
14 5.337 8.765
15 5.359 8.638
16 4.537 8.298

OpenMP and controlling for affinity

nOMP
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Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi
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Take xdoty.c and axpy.c from /onyx/data/sds406f24/l04/ex01/ and modify them to report
sustained bandwidth

Run again for 1 to 16 OpenMP threads and plot  versus  for both programs on
the same plot
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Take xdoty.c and axpy.c from /onyx/data/sds406f24/l04/ex01/ and modify them to report
sustained bandwidth

Run again for 1 to 16 OpenMP threads and plot  versus  for both programs on
the same plot

Percentage of peak?

Compare with per socket theoretical peak of 80 GBytes/s

Performance analysis
Back to our linear algebra kernels
axpy:

xdoty:

← a ⋅ +yi xi yi

r = ⋅∑
i
xi yi

βIO nOMP

∼
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Performance analysis
Another example using axpy():

← a ⋅ + i = 0, . . . , L − 1yi xi yi
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Another example using axpy():

See /onyx/data/sds406f24/l04/ex02/.

Use module load gompi and compile with cc -O3 -fopenmp -o axpy axpy.c

← a ⋅ + i = 0, . . . , L − 1yi xi yi
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Does y[:] = a*x[:] + y[:] repeatidly until three seconds have elapsed

double t0 = stop_watch(0);
int niter = 0;
for(; stop_watch(t0) < 3; niter++) {
  axpy(n, a, x, y);
}
t0 = stop_watch(t0)/niter;

 Warm-up: Add an OpenMP pragma to parallelize the loop over n in axpy()

 Warm-up: Correct the calculation of  and 

 Warm-up: Compile and run once using  and 2 OpenMP thread

← a ⋅ + i = 0, . . . , L − 1yi xi yi
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→ βfp βIO
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Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
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Your task now

Edit the incomplete run.sh

Loop over  for values =128, 256, ..., 512 1024  (double each time)

Loop over  for values =1, 2, 4, ..., 16 (double each time)
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Another example using axpy():

[ikoutsou@front02 ex02]$ sbatch run.sh
Submitted batch job 181364
[ikoutsou@front02 ex02]$ cat axpy.txt
 nth =  2   t0 = 3.678e-04 sec   L =    1048576   niter =     8158   beta_fp = 5.702e+00 Gflop/s   beta_io = 6.843e+01 GBytes/s

The program called axpy() 8158 times

t0 is the average time for the 8158 calls

Your task now

Edit the incomplete run.sh

Loop over  for values =128, 256, ..., 512 1024  (double each time)

Loop over  for values =1, 2, 4, ..., 16 (double each time)

Plot  versus . Use different colors for different 
 best use log-scale on the x-axis

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L L × 2

nOMP nOMP

βIO L nOMP
→
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Performance analysis
axpy:

Smaller   data is repeatedly read from cache  high bandwidth 

Increasing the number of cores used increases the bandwidth that can be sustained

For  that fits in a single NUMA-node RAM (i.e.  64 GBytes)  peak bandwidth is 83 GBytes/s

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L⇒ ⇒ ≫ γIO

L < ⇒
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Performance analysis
axpy:

What is the cache size?

22 MBytes (for each socket)

See e.g. /proc/cpuinfo or hwloc-ls

For which value of  do we reach the cache size limit

Storage requirements:  (one x[] and one y[])

=sizeof(double)=8 Bytes

 =22 MBytes / (8 Bytes )  2

← a ⋅ + i = 0, . . . , L − 1yi xi yi

L
w ⋅ 2 ⋅ L

w

⇒Lc ×2 ≃ 20
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Performance analysis

Dashed vertical line indicates , i.e. the largest value of  for which arrays x[] and y[] still fit in the L3 cache of 22 MBytesLc L
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Optimization
Cache locality

The axpy analysis we just went through is a simple case that helps demonstrate the effect of "staying in cache" or "dropping out of cache"
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The axpy analysis we just went through is a simple case that helps demonstrate the effect of "staying in cache" or "dropping out of cache"

For axpy, there is not much to be done in terms of data-layout transformations that can help achieve better so-called "data locality"

One good example though that can help demonstrate this effect it the matrix-matrix multiplication
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