
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L05: Introduction to GPU programming, 1  November 2024st

1 / 42



Outline
Introductory part

Review of GPU architecture

Review of GPU programming and CUDA

Some details of the GPU nodes of our cluster

2 / 42



Outline
Introductory part

Review of GPU architecture

Review of GPU programming and CUDA

Some details of the GPU nodes of our cluster

Practical examples on GPUs
Covering:

GPU performance vs CPU performance  this lecture

Memory coalescing on GPUs  this lecture

Shared memory  next week

Details of GPU thread scheduling (warps) and why you should care  next week

−−

−−

−−

−−

2 / 42



CPU

Few heavy cores

Large memory

Moderate BW to memory

Optimized for serial execution

GPU

Many light "cores"

Smaller memory

High BW to memory

Optimized for parallel execution

GPU architecture

3 / 42



GPU programming model

Some numbers from our cluster's nodes: cyc nodes (NVIDIA definitions)

NVIDIA P100 "Pascal" GPUs

56 Streaming Multiprocessors (SM) per GPU

32 FP64 or 64 FP32 "cores" per SM

GPU memory: 16 GBytes

Clock rate: ~1.5 GHz

Cache (L2): 4 MBytes

BW: 732 GB/s

4 / 42



GPU programming model

Some numbers from our cluster's nodes: cyc nodes (NVIDIA definitions)

NVIDIA P100 "Pascal" GPUs

56 Streaming Multiprocessors (SM) per GPU

32 FP64 or 64 FP32 "cores" per SM

GPU memory: 16 GBytes

Clock rate: ~1.5 GHz

Cache (L2): 4 MBytes

BW: 732 GB/s

We will come back to these numbers during the practical

4 / 42



GPU programming model

"Offload" model of programming

CPU starts program (runs main())

CPU copies data to GPU memory (over e.g. PCIe, ~16 GB/s)

CPU dispatches "kernels" for execution on GPU

Kernels read/write to GPU memory (~732 GB/s)

Kernels run on GPU threads (thousands) which share fast memory [ (10) times faster compared to GPU memory]

Kernel completes; CPU copies data back from GPU (over e.g. PCIe, ~16 GB/s)

O

5 / 42



GPU programming model

GPU memory model (NVIDIA model)

GPU threads: slow access to global, constant, and texture memory

Each thread has registers (fast) and local memory (slow)

Threads are grouped into blocks; Threads within the same block: shared memory (fast)

6 / 42



GPU programming model

GPU memory model (NVIDIA model); some numbers for context

Threads per block: 1024 (max)

Register memory (per block): 256 KB

Shared memory (per block): 64 KB

7 / 42



GPU programming model

GPU memory model (NVIDIA model)

Assumptions about execution order

Threads within the same block can be assumed to run concurrently

No assumption about the order by which blocks are executed

8 / 42



CUDA programming model
NVIDIA programming framework for NVIDIA GPUs

Compute Unified Device Architecture

C-like programming language for writing CUDA Kernels
Includes C/C++ and Fortran variants

Compiler for C/C++: nvcc

Functions for transferring data to/from GPUs, starting kernels, etc.

Some higher-level functionality also available (linear algebra, random number generations, etc.)

Concepts generalizable to other accelerator programming frameworks (OpenCL, OpenACC, HiP, etc.)

9 / 42



CUDA programming basics
Nomenclature

"Host" is the CPU

"Device" is the GPU

Allocate memory on GPU

err = cudaMalloc(&d_ptr, size);

Call from host (CPU)

Allocate size bytes of memory on GPU and store the starting address in d_ptr

d_ptr is a variable that holds an address to GPU memory i.e. a "device pointer"

If err != cudaSuccess then something went wrong

Free GPU memory

cudaFree(d_ptr);

10 / 42



CUDA programming basics
Nomenclature

"Host" is the CPU

"Device" is the GPU

Copy data to GPU

cudaMemcpy(d_ptr, ptr, size, cudaMemcpyHostToDevice);

Call from host (CPU)

Copy data on host pointed to by ptr to device at address pointed to by d_ptr

Device memory should have been allocated using cudaMalloc() to obtain d_ptr

Copy data from GPU

cudaMemcpy(ptr, d_ptr, size, cudaMemcpyDeviceToHost);

Call from host (CPU)

Copy data on device pointed to by d_ptr to host at address pointed to by ptr

Host memory should have been allocated using e.g. malloc() to obtain ptr

11 / 42



CUDA programming basics
Declare a CUDA kernel

Example:

__global__ void
func(int n, double a, double *x)
{
    ...
    return;
}

Call a CUDA kernel

Call from host. Example:

func<<<nblck, nthr>>>(n, a, x);

nthr: number of threads per block; can be scalar or a dim3 type

nblck: number of blocks; can be scalar or a dim3 type

Example of dim3 type:

dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */

12 / 42



CUDA programming basics
Call a CUDA kernel

Call from host. Example:

func<<<nblck, nthr>>>(n, a, x);

nthr: number of threads per block; can be scalar or a dim3 type

nblck: number of blocks; can be scalar or a dim3 type

Example of dim3 type:

dim3 nthr(1024, 8, 8); /* No. of threads in (x, y, z) */

Thread coordinates within kernel

Example:

__global__ void
func(int n, double a, double *x)
{
    int idx = threadIdx.x + blockIdx.x*blockDim.x;
    ...
    return;
}

13 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

14 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

15 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

16 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

17 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

18 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

19 / 42



CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

20 / 42



Variables available within kernel

threadIdx.{x,y,z}

blockIdx.{x,y,z}

blockDim.{x,y,z}

gridDim.{x,y,z}

CUDA programming basics
Threads, blocks, grids

dim3 blcks( 4, 3, bz);
dim3 thrds(16, 8, tz);
func<<<blcks, thrds>>>(...);

21 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 8 cores (per socket) of our educational nodes

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 8 cores (per socket) of our educational nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 8 cores (per socket) of our educational nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 8 cores (per socket) of our educational nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Transferring memory to/from GPU;

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 8 cores (per socket) of our educational nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Transferring memory to/from GPU;

Invoking kernels;

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
Exercise: port a simple code to GPU and investigate performance

Exercise directory: /onyx/data/sds406f24/l05/ex01

axpy.cu implements this course's favorite BLAS operation, "axpy":

with  scalar and  and  vectors of length .

Currently Implements this on the CPU. Uses OpenMP to multi-thread over the 8 cores (per socket) of our educational nodes

We will proceed step-by-step, to port this simple application to the GPU using CUDA

This will cover:

Allocation of memory on the GPU;

Transferring memory to/from GPU;

Invoking kernels;

Placement of threads and memory access

← a ⋅ + , i = 0, . . . , n − 1yi xi yi

a y x n

22 / 42



CUDA Example
File: ex01/axpy.cu

Contains the C program we will begin with: axpy.cu

Even though the file extension is .cu, the program contains no CUDA. Only OpenMP

Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line

x0 and y0 are initialized to random numbers

x1 and y1 are initialized to x0 and y0 respectively

The program:

performs y0[:] = a*x0[:] + y0[:] in the first part marked with A:

performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:

reports the timing for part A and for B

reports the difference between y0 and y1

23 / 42



CUDA Example
File: ex01/axpy.cu

Contains the C program we will begin with: axpy.cu

Even though the file extension is .cu, the program contains no CUDA. Only OpenMP

Allocates four arrays: x0[n], x1[n], y0[n], and y1[n], with n read from the command line

x0 and y0 are initialized to random numbers

x1 and y1 are initialized to x0 and y0 respectively

The program:

performs y0[:] = a*x0[:] + y0[:] in the first part marked with A:

performs y1[:] = a*x1[:] + y1[:] in the second part marked with B:

reports the timing for part A and for B

reports the difference between y0 and y1

Take some time to inspect axpy.cu before we compile and run

23 / 42



CUDA Example
Copy the exercise from this week's lesson directory:

[ikoutsou@front02 l05]$ cp -r /onyx/data/sds406f24/l05/ex01 .
[ikoutsou@front02 l05]$ cd ex01/
[ikoutsou@front02 ex01]$ ls -1
axpy.cu

24 / 42



CUDA Example
Copy the exercise from this week's lesson directory:

[ikoutsou@front02 l05]$ cp -r /onyx/data/sds406f24/l05/ex01 .
[ikoutsou@front02 l05]$ cd ex01/
[ikoutsou@front02 ex01]$ ls -1
axpy.cu

Compile with nvcc including OpenMP:

[ikoutsou@front02 ex01]$ module load gompi/2023a
[ikoutsou@front02 ex01]$ module load CUDA
[ikoutsou@front02 ex01]$ nvcc -O3 -Xcompiler -fopenmp -o axpy axpy.cu

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

24 / 42



CUDA Example
Copy the exercise from this week's lesson directory:

[ikoutsou@front02 l05]$ cp -r /onyx/data/sds406f24/l05/ex01 .
[ikoutsou@front02 l05]$ cd ex01/
[ikoutsou@front02 ex01]$ ls -1
axpy.cu

Compile with nvcc including OpenMP:

[ikoutsou@front02 ex01]$ module load gompi/2023a
[ikoutsou@front02 ex01]$ module load CUDA
[ikoutsou@front02 ex01]$ nvcc -O3 -Xcompiler -fopenmp -o axpy axpy.cu

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

Run on the CPUs of a GPU node

Use srun to run interactively, e.g.:

[ikoutsou@front02 ex01]$ export OMP_PROC_BIND="close" 
[ikoutsou@front02 ex01]$ export OMP_PLACES="cores" 
[ikoutsou@front02 ex01]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0145 sec   P =   9.232 Gflop/s   B =  55.393 GB/s
 CPU: nthr =   16   t0 = 0.0142 sec   P =   9.437 Gflop/s   B =  56.620 GB/s
 Diff = 0.000000e+00

24 / 42



CUDA Example
Copy the exercise from this week's lesson directory:

[ikoutsou@front02 l05]$ cp -r /onyx/data/sds406f24/l05/ex01 .
[ikoutsou@front02 l05]$ cd ex01/
[ikoutsou@front02 ex01]$ ls -1
axpy.cu

Compile with nvcc including OpenMP:

[ikoutsou@front02 ex01]$ module load gompi/2023a
[ikoutsou@front02 ex01]$ module load CUDA
[ikoutsou@front02 ex01]$ nvcc -O3 -Xcompiler -fopenmp -o axpy axpy.cu

-Xcompiler -fopenmp: tells nvcc to pass -fopenmp to the underlying C compiler (here gcc)

Run on the CPUs of a GPU node

Use srun to run interactively, e.g.:

[ikoutsou@front02 ex01]$ export OMP_PROC_BIND="close" 
[ikoutsou@front02 ex01]$ export OMP_PLACES="cores" 
[ikoutsou@front02 ex01]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0145 sec   P =   9.232 Gflop/s   B =  55.393 GB/s
 CPU: nthr =   16   t0 = 0.0142 sec   P =   9.437 Gflop/s   B =  56.620 GB/s
 Diff = 0.000000e+00

Compare ~56 GB/s achieved vs ~80 GB/s peak memory bandwidth (single socket)

24 / 42



CUDA Example
Use a GPU to replace part B of the calculation

Edits outside of main():

1. Add the cuda_runtime.h header file

2. Add the GPU axpy kernel, naming it gpu_axpy()

3. Add a function similar to ualloc() that allocates memory on the GPU and checks whether an error occured

Edits within main():

1. Allocate arrays on GPU

2. Copy x1[:] and y1[:] to GPU

3. Call gpu_axpy()

4. Copy y1[:] from GPU

25 / 42



CUDA Example
Edits outside of main() 1/3

Add the cuda_runtime.h header file on line 5:

#include <cuda_runtime.h>

26 / 42



CUDA Example
Edits outside of main() 2/3

Add the GPU axpy kernel, naming it gpu_axpy(), after the CPU axpy, around line 64:

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
  for(int i=0; i<n; i++)
    y[i] = a*x[i] + y[i];

  return;
}

27 / 42



CUDA Example
Edits outside of main() 3/3

At around line 30 add a function similar to ualloc() that allocates memory on the GPU and checks whether an error occurred

/***
 * Allocate memory on GPU; print error if not successful
 ***/
void *
gpu_alloc(size_t size)
{
  void *ptr;
  cudaError_t err = cudaMalloc(&ptr, size);
  if(err != cudaSuccess) {
    fprintf(stderr, "cudaMalloc() returned %d; quitting...\n", err);
    exit(-2);
  } 
  return ptr;
}

28 / 42



CUDA Example
Edits within main() 1/4

Allocate arrays on GPU, within B part. Free arrays before closing B part:

/*
 * B: Run axpy(), return to y1, report performance
 */
  {
    /* Allocate GPU memory */
    float *d_x = (float *)gpu_alloc(n*sizeof(float));
    float *d_y = (float *)gpu_alloc(n*sizeof(float));
    ...
    cudaFree(d_x);
    cudaFree(d_y);
  }

29 / 42



CUDA Example
Edits within main() 2/4

Copy x1[:] and y1[:] to GPU

  cudaMemcpy(d_x, x1, sizeof(float)*n, cudaMemcpyHostToDevice);
  cudaMemcpy(d_y, y1, sizeof(float)*n, cudaMemcpyHostToDevice);

30 / 42



CUDA Example
Edits within main() 3/4

Call gpu_axpy(). For the moment use 1 thread and 1 block. Replace axpy(n, a, x, y) of part B with:

    double t0 = stop_watch(0);
    gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
    t0 = stop_watch(t0);

Note we need to pass the device pointers since it is these pointers that point to the memory allocated on the GPU

31 / 42



CUDA Example
Edits within main() 4/4

Copy y1[:] from GPU:

/* Copy y1 back from GPU */
cudaMemcpy(y1, d_y, sizeof(float)*n, cudaMemcpyDeviceToHost);

Also change:

printf(" CPU: nthr = %4d   ...);

to:

printf(" GPU:              ...);

and remove OpenMP parallel region.

32 / 42



CUDA Example
Compile and run

Compile as before:

   [ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu

We need to specify -arch=sm_60, the architecture of the GPUs on the cyc nodes (P100 architecture), because by default nvcc compiles against a newer GPU
version, compatible with newer nodes

Run as before (I'm assuming OMP_BIND, OMP_PLACES, and OMP_NUM_THREADS were set before):

 CPU: nthr =   16   t0 = 0.0150 sec   P =   8.945 Gflop/s   B =  53.670 GB/s
 GPU:               t0 = 0.0001 sec   P = 2630.607 Gflop/s   B = 15783.644 GB/s
 Diff = 1.021564e-15

33 / 42



CUDA Example
Compile and run

Compile as before:

   [ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu

We need to specify -arch=sm_60, the architecture of the GPUs on the cyc nodes (P100 architecture), because by default nvcc compiles against a newer GPU
version, compatible with newer nodes

Run as before (I'm assuming OMP_BIND, OMP_PLACES, and OMP_NUM_THREADS were set before):

 CPU: nthr =   16   t0 = 0.0150 sec   P =   8.945 Gflop/s   B =  53.670 GB/s
 GPU:               t0 = 0.0001 sec   P = 2630.607 Gflop/s   B = 15783.644 GB/s
 Diff = 1.021564e-15

This performance is infeasible. What's going on?

33 / 42



CUDA Example
Edits within main() 3/4

The problem is here:

    double t0 = stop_watch(0);
    gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
    t0 = stop_watch(t0);

CUDA kernels return immediately; the kernel is still being executed on the device when stop_watch(t0) is called. We are not timing the kernel execution time,
but the time it takes to dispatch the kernel to the GPU.

34 / 42



CUDA Example
Edits within main() 3/4

The problem is here:

    double t0 = stop_watch(0);
    gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
    t0 = stop_watch(t0);

CUDA kernels return immediately; the kernel is still being executed on the device when stop_watch(t0) is called. We are not timing the kernel execution time,
but the time it takes to dispatch the kernel to the GPU.

Correct this by adding cudaDeviceSynchronize(); after the CUDA kernel, which blocks until all running CUDA kernels are complete:

    double t0 = stop_watch(0);
    gpu_axpy<<<1, 1>>>(n, a, d_x, d_y);
    cudaDeviceSynchronize();
    t0 = stop_watch(t0);

34 / 42



CUDA Example
Compile and run again:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0149 sec   P =   9.024 Gflop/s   B =  54.145 GB/s
 GPU:               t0 = 8.9564 sec   P =   0.015 Gflop/s   B =   0.090 GB/s
 Diff = 1.021564e-15

35 / 42



CUDA Example
Compile and run again:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0149 sec   P =   9.024 Gflop/s   B =  54.145 GB/s
 GPU:               t0 = 8.9564 sec   P =   0.015 Gflop/s   B =   0.090 GB/s
 Diff = 1.021564e-15

This performance is of course extremely poor;

35 / 42



CUDA Example
Compile and run again:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0149 sec   P =   9.024 Gflop/s   B =  54.145 GB/s
 GPU:               t0 = 8.9564 sec   P =   0.015 Gflop/s   B =   0.090 GB/s
 Diff = 1.021564e-15

This performance is of course extremely poor;

We're using only one GPU thread in the kernel

35 / 42



CUDA Example
Use more threads

In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

    double t0 = stop_watch(0);
    gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
    cudaDeviceSynchronize();
    t0 = stop_watch(t0);

36 / 42



CUDA Example
Use more threads

In this step, we will use 512 GPU threads. First, change the call to the GPU kernel:

    double t0 = stop_watch(0);
    gpu_axpy<<<1, 512>>>(n, a, d_x, d_y);
    cudaDeviceSynchronize();
    t0 = stop_watch(t0);

Then we need to change the kernel. We need in each GPU thread to calculate which elements it will operate on:

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
  int ithr = threadIdx.x;
  int nthr = blockDim.x;
  int lt = n/nthr;
  for(int i=ithr*lt; i<(ithr+1)*lt; i++)
    y[i] = a*x[i] + y[i];
  return;
}

With the above, each thread operated on n/nthr contiguous elements

36 / 42



CUDA Example
Compile and run again:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0150 sec   P =   8.940 Gflop/s   B =  53.637 GB/s
 GPU:               t0 = 0.2555 sec   P =   0.525 Gflop/s   B =   3.152 GB/s
 Diff = 1.021564e-15

Better than before, but still very poor performance. Can we do better?

37 / 42



This represents the order by which elements are accessed currently

The same thread accesses continuous elements

Very common approach on CPUs

On GPUs, this results in so-called bank conflicts

Suboptimal!

CUDA Example
Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

38 / 42



This represents an optimal data access pattern

Different threads accesses continuous elements

Each thread is served by a different memory bank

CUDA Example
Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

39 / 42



CUDA Example
Optimized GPU memory access

Always keep in mind that on GPUs, it is more optimal if contiguous threads access contiguous memory locations

In our example:

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
  int ithr = threadIdx.x;
  int nthr = blockDim.x;
  for(int i=0; i<n; i+=nthr)
    y[i+ithr] = a*x[i+ithr] + y[i+ithr];
  return;
}

Compile and run:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0150 sec   P =   8.950 Gflop/s   B =  53.698 GB/s
 GPU:               t0 = 0.0565 sec   P =   2.377 Gflop/s   B =  14.260 GB/s
 Diff = 1.021564e-15

40 / 42



CUDA Example
Blocks and threads

Now let's use blocks. Let's use as many blocks and threads as we can

Upper limit of 1024 threads

Upper limit of  blocks (practically infinite)

    double t0 = stop_watch(0);
    int nthr = 1024;
    gpu_axpy<<<n/nthr, nthr>>>(n, a, d_x, d_y);
    cudaDeviceSynchronize();
    t0 = stop_watch(t0);

/***
 * Do y <- a*x + y on the GPU
 ***/
__global__ void
gpu_axpy(int n, float a, float *x, float *y)
{
  int ithr = threadIdx.x;
  int nthr = blockDim.x;
  int iblk = blockIdx.x;
  int idx = ithr + iblk*nthr;
  y[idx] = a*x[idx] + y[idx];
  return;
}

− 1231

41 / 42



CUDA Example
Blocks and threads

Compile and run:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0144 sec   P =   9.303 Gflop/s   B =  55.816 GB/s
 GPU:               t0 = 0.0016 sec   P =  86.316 Gflop/s   B = 517.893 GB/s
 Diff = 1.021564e-15

~520 GB/s is ~70% of peak bandwidth (which is 732 GB/s)

42 / 42



CUDA Example
Blocks and threads

Compile and run:

[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o axpy axpy.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100 --gres=gpu:1 ./axpy $((1024*1024*64))
 CPU: nthr =   16   t0 = 0.0144 sec   P =   9.303 Gflop/s   B =  55.816 GB/s
 GPU:               t0 = 0.0016 sec   P =  86.316 Gflop/s   B = 517.893 GB/s
 Diff = 1.021564e-15

~520 GB/s is ~70% of peak bandwidth (which is 732 GB/s)

Try varying the number of threads per block. E.g. read it from the command line and scan for the optimal value.

42 / 42




