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Last week

Review of GPU architecture

Review of GPU programming and CUDA

Some details of the GPU nodes of Cyclamen

Practical examples on GPUs
Covering:

GPU performance vs CPU performance  

Memory coalescing on GPUs  

Shared memory  this week

Details of GPU thread scheduling (warps) and why you should care  this week
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CUDA, another example
Exercise: rotate and shift an array of  coordinates

/onyx/data/sds406f24/l06/ex01/rot.cu calls, as before, the same kernel twice

Operation is 

Where:

(x, y)

= U +v⃗i r⃗i s⃗i

U =
( )
cos(θ)

sin(θ)

−sin(θ)

cos(θ)
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CUDA, another example
Exercise: rotate and shift an array of  coordinates

/onyx/data/sds406f24/l06/ex01/rot.cu calls, as before, the same kernel twice

Operation is 

Where:

Equivalently:

(x, y)

= U +v⃗i r⃗i s⃗i

U =
( )
cos(θ)

sin(θ)

−sin(θ)

cos(θ)

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y
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Coordinate transformation using CUDA
= U + ⇒v⃗i r⃗i s⃗i

= cos(θ) − sin(θ) +vi,x ri,x ri,y si,x

= sin(θ) + cos(θ) +vi,y ri,x ri,y si,y
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Coordinate transformation using CUDA
TODO, for a first version

Implement a CUDA version for the second call

Each GPU thread operating on one point ( )i
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Coordinate transformation using CUDA
TODO, for a first version

Implement a CUDA version for the second call

Each GPU thread operating on one point ( )

Example:

[ikoutsou@front02 ex01]$ export OMP_PROC_BIND="close"
[ikoutsou@front02 ex01]$ export OMP_PLACES="cores"
[ikoutsou@front02 ex01]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex01]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o rot rot.cu
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=16 -p p100  --gres=gpu:1 ./rot 32 $((1024*1024*128))
 CPU: nthr =   16   t0 = 0.0806 sec   P =  13.329 Gflop/s   B =  39.988 GB/s
 GPU: nthr =   32   t0 = 0.0076 sec   P = 141.077 Gflop/s   B = 423.231 GB/s
 Diff = 1.115821e-15

i
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Coordinate transformation using CUDA
The optimal number of threads typically needs to be obtained empirically

If we allow the number of threads to be a command line argument, we can easily scan for it

[ikoutsou@front02 ex01]$ for((th=4; th<=1024; th*=2)) 
> do srun -n 1 --cpus-per-task=16 -p p100  --gres=gpu:1 ./rot $th $((1024*1024*128))
> done 2>&1 | grep GPU
 GPU: nthr =    4   t0 = 0.0630 sec   P =  17.047 Gflop/s   B =  51.142 GB/s
 GPU: nthr =    8   t0 = 0.0313 sec   P =  34.341 Gflop/s   B = 103.023 GB/s
 GPU: nthr =   16   t0 = 0.0149 sec   P =  71.832 Gflop/s   B = 215.497 GB/s
 GPU: nthr =   32   t0 = 0.0076 sec   P = 141.077 Gflop/s   B = 423.231 GB/s
 GPU: nthr =   64   t0 = 0.0065 sec   P = 166.240 Gflop/s   B = 498.719 GB/s
 GPU: nthr =  128   t0 = 0.0065 sec   P = 165.598 Gflop/s   B = 496.794 GB/s
 GPU: nthr =  256   t0 = 0.0065 sec   P = 165.933 Gflop/s   B = 497.800 GB/s
 GPU: nthr =  512   t0 = 0.0064 sec   P = 167.277 Gflop/s   B = 501.831 GB/s
 GPU: nthr = 1024   t0 = 0.0064 sec   P = 168.327 Gflop/s   B = 504.982 GB/s
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> do srun -n 1 --cpus-per-task=16 -p p100  --gres=gpu:1 ./rot $th $((1024*1024*128))
> done 2>&1 | grep GPU
 GPU: nthr =    4   t0 = 0.0630 sec   P =  17.047 Gflop/s   B =  51.142 GB/s
 GPU: nthr =    8   t0 = 0.0313 sec   P =  34.341 Gflop/s   B = 103.023 GB/s
 GPU: nthr =   16   t0 = 0.0149 sec   P =  71.832 Gflop/s   B = 215.497 GB/s
 GPU: nthr =   32   t0 = 0.0076 sec   P = 141.077 Gflop/s   B = 423.231 GB/s
 GPU: nthr =   64   t0 = 0.0065 sec   P = 166.240 Gflop/s   B = 498.719 GB/s
 GPU: nthr =  128   t0 = 0.0065 sec   P = 165.598 Gflop/s   B = 496.794 GB/s
 GPU: nthr =  256   t0 = 0.0065 sec   P = 165.933 Gflop/s   B = 497.800 GB/s
 GPU: nthr =  512   t0 = 0.0064 sec   P = 167.277 Gflop/s   B = 501.831 GB/s
 GPU: nthr = 1024   t0 = 0.0064 sec   P = 168.327 Gflop/s   B = 504.982 GB/s

Tops at ~500 GBytes/s or ~70%. Can we do better?
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Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory  two continuous component per thread

Optimization opportunity: use one thread per component

⇒
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Coordinate transformation using CUDA
Optimizations

Note the loading of elements of r[] from global memory  two continuous component per thread

Optimization opportunity: use one thread per component

 Instead of each thread operating on one point, consider each thread operating on a single component of the coordinate

In other words, have:

even threads computing the x coordinate part of v[:]

odd threads computing the y coordinate of v[:]

This will demonstrate the use of shared memory, i.e. fast memory which all threads in a single block can access

Shared memory is declared with the shared attribute, i.e.:

__shared__ float arr[SIZE];

Note that here SIZE must be known at compile time

Alternatively, we can have dynamic allocation of shared memory (relatively recent CUDA feature)

⇒

⇒
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Coordinate transformation using CUDA
Optimizations

Below is how we would like to organize this calculation:

i2=2*i
(x coord. of elem. i + 0) thread = 0; v[i2+0] = r[i2+0]*ct - r[i2+1]*st + s[i2+0]
(y coord. of elem. i + 0) thread = 1; v[i2+1] = r[i2+1]*ct + r[i2+0]*st + s[i2+1]
(x coord. of elem. i + 1) thread = 2; v[i2+2] = r[i2+2]*ct - r[i2+3]*st + s[i2+2]
(y coord. of elem. i + 1) thread = 3; v[i2+3] = r[i2+3]*ct + r[i2+2]*st + s[i2+3]
(x coord. of elem. i + 2) thread = 4; v[i2+4] = r[i2+4]*ct - r[i2+5]*st + s[i2+4]
(y coord. of elem. i + 2) thread = 5; v[i2+5] = r[i2+5]*ct + r[i2+4]*st + s[i2+5]
(x coord. of elem. i + 3) thread = 6; v[i2+6] = r[i2+6]*ct - r[i2+7]*st + s[i2+6]
(y coord. of elem. i + 3) thread = 7; v[i2+7] = r[i2+7]*ct + r[i2+6]*st + s[i2+7]
...

Notice that odd threads and even threads carry out different operations

But on a GPU, it is important for performance to have all threads in a kernel execute the same operations

In other words, try to avoid as much as possible constructs like:
if(ithr % 2 == 0){ ... };
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Coordinate transformation using CUDA
Optimizations

First define a macro at the beginning of the file:

#define MAX_THR 1024

Then, when invoking the kernel, change the call to use twice the number of blocks:

gpu_rotate<<<2*n/n_gpu_thr, n_gpu_thr>>>(n, d_v, theta, d_r, d_s);
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Coordinate transformation using CUDA
Optimizations

In the kernel, declare a shared array, to be used to store the elements of r[]:

__shared__ float rr[MAX_THR];
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Coordinate transformation using CUDA
Optimizations

In the kernel, declare a shared array, to be used to store the elements of r[]:

__shared__ float rr[MAX_THR];

We need a shared array for r[], because different threads will need to access the same elements. In particular, whether odd or even, each thread needs to
access both x and y components of x[]

By reading r[] into rr[] once, we avoid each thread having to read elements of r[] twice from global memory, which is slow

Read the elements of r[] corresponding to this block into rr[]:

  int idx = iblk*nthr + ithr;
  rr[ithr] = r[idx];

This way, the loading is done parallel: each thread reads in one component of r[]
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Coordinate transformation using CUDA
Optimizations

Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];
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Coordinate transformation using CUDA
Optimizations

Now insert the following, which only achieves the operation partially:

float rs = s[idx] + ct*rr[ithr];

The operation is still incomplete; what we have achieved with the above is:

we are missing:

← cos(θ) +vx rx sx

← cos(θ) +vy ry sy

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx
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Coordinate transformation using CUDA
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← − sin(θ)vx vx ry

← + sin(θ)vy vy rx
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Coordinate transformation using CUDA
Optimizations

We are missing:

Consider the following:

int sw = 1 - 2*(ithr & 1);

& is a bitwise "and" operation, meaning ithr & 1 will evaluate to:

0 if ithr is even

1 if ithr is odd

sw = 1 - 2*(ithr & 1) therefore yields:

ithr = 0,  1, 2,  3, ...
sw   = 1, -1, 1, -1, ...

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx
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Coordinate transformation using CUDA
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Coordinate transformation using CUDA
Optimizations

We are missing:

Consider:

rs =  rs - sw*st*rr[ithr+sw];

Then read back into out[]:

  out[idx] = rs;

← − sin(θ)vx vx ry

← + sin(θ)vy vy rx
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Coordinate transformation using CUDA
Optimizations

Compile and run, scanning the number of GPU threads (filtering only the GPU line):

[ikoutsou@front02 ex01]$ for((th=4; th<=1024; th*=2))
> do srun -n 1 --cpus-per-task=8 -p nehalem  --gres=gpu:1 ./rot $th $((1024*1024*128))
> done 2>&1 | grep GPU
 GPU: nthr =    4   t0 = 0.1217 sec   P =   8.822 Gflop/s   B =  26.465 GB/s
 GPU: nthr =    8   t0 = 0.0608 sec   P =  17.664 Gflop/s   B =  52.993 GB/s
 GPU: nthr =   16   t0 = 0.0283 sec   P =  37.941 Gflop/s   B = 113.824 GB/s
 GPU: nthr =   32   t0 = 0.0155 sec   P =  69.153 Gflop/s   B = 207.459 GB/s
 GPU: nthr =   64   t0 = 0.0078 sec   P = 137.150 Gflop/s   B = 411.450 GB/s
 GPU: nthr =  128   t0 = 0.0059 sec   P = 180.614 Gflop/s   B = 541.841 GB/s
 GPU: nthr =  256   t0 = 0.0060 sec   P = 180.252 Gflop/s   B = 540.756 GB/s
 GPU: nthr =  512   t0 = 0.0060 sec   P = 179.433 Gflop/s   B = 538.300 GB/s
 GPU: nthr = 1024   t0 = 0.0061 sec   P = 175.278 Gflop/s   B = 525.835 GB/s
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> done 2>&1 | grep GPU
 GPU: nthr =    4   t0 = 0.1217 sec   P =   8.822 Gflop/s   B =  26.465 GB/s
 GPU: nthr =    8   t0 = 0.0608 sec   P =  17.664 Gflop/s   B =  52.993 GB/s
 GPU: nthr =   16   t0 = 0.0283 sec   P =  37.941 Gflop/s   B = 113.824 GB/s
 GPU: nthr =   32   t0 = 0.0155 sec   P =  69.153 Gflop/s   B = 207.459 GB/s
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 GPU: nthr =  128   t0 = 0.0059 sec   P = 180.614 Gflop/s   B = 541.841 GB/s
 GPU: nthr =  256   t0 = 0.0060 sec   P = 180.252 Gflop/s   B = 540.756 GB/s
 GPU: nthr =  512   t0 = 0.0060 sec   P = 179.433 Gflop/s   B = 538.300 GB/s
 GPU: nthr = 1024   t0 = 0.0061 sec   P = 175.278 Gflop/s   B = 525.835 GB/s

Maximum performance saturates at ~540 GB/s, or ~75% of peak bandwidth
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Matrix-vector multiplication
We will look into another example, the matrix vector multiplication

where ,  are vectors (1-dimensional) and  is a matrix (2-dimensional)

In the general case  is not square

, , 

y = Ax

y x A

A

AM×N xN yM
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Matrix-vector multiplication
We will look into another example, the matrix vector multiplication

where ,  are vectors (1-dimensional) and  is a matrix (2-dimensional)

In the general case  is not square

, , 

for(int i=0; i<m; i++) {
  y[i] = 0;
  for(int j=0; j<n; j++) {
    y[i] = y[i] + A[i][j] * x[j];
  }
}

y = Ax

y x A

A

AM×N xN yM

= , i = 0, . . . ,Myi ∑
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N−1
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where ,  are vectors (1-dimensional) and  is a matrix (2-dimensional)

In the general case  is not square

, , 

for(int i=0; i<m; i++) {
  y[i] = 0;
  for(int j=0; j<n; j++) {
    y[i] = y[i] + A[i][j] * x[j];
  }
}

for(int i=0; i<m; i++) {
  y[i] = 0;
  for(int j=0; j<n; j++) {
    y[i] += A[i*n + j] * x[j];
  }
}

y = Ax

y x A

A

AM×N xN yM

= , i = 0, . . . ,Myi ∑
j=0
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Matrix-vector multiplication
Take /onyx/data/sds406f24/l06/ex02/ex02/. for the CPU code:

[ikoutsou@front02 l06]$ cp -r /onyx/data/sds406f24/l06/ex02/ex02 .
[ikoutsou@front02 l06]$ cd ex02/.
[ikoutsou@front02 ex02]$ nvcc -arch=sm_60 -O3 -Xcompiler -fopenmp -o matvec matvec.cu
[ikoutsou@front02 ex02]$ export OMP_PLACES="cores"
[ikoutsou@front02 ex02]$ export OMP_PROC_BIND="close"
[ikoutsou@front02 ex02]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex02]$ srun -N 1  --cpus-per-task=16 -p p100  --gres=gpu:1 ./matvec 4096 8192
 CPU: nthr =   16   t0 = 0.0036 sec   P =  18.888 Gflop/s   B =  37.791 GB/s
 CPU: nthr =   16   t0 = 0.0030 sec   P =  22.663 Gflop/s   B =  45.343 GB/s
 Diff = 0.000000e+00
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Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.
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Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.

Straight-forward approach to begin with:

Each block is responsible for one element of y[]

Each thread must read all elements of the corresponding row of A[]

Each thread must read all elements of x[]

24 / 29



Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.

Straight-forward approach to begin with:

Each block is responsible for one element of y[]

Each thread must read all elements of the corresponding row of A[]

Each thread must read all elements of x[]

E.g., using 256 GPU threads:

[ikoutsou@front02 ex02]$ srun -N 1  --cpus-per-task=16 -p p100  --gres=gpu:1 ./matvec 4096 8192
 CPU: nthr =   16   t0 = 0.0035 sec   P =  19.108 Gflop/s   B =  38.229 GB/s
 GPU: nthr =  256   t0 = 0.0020 sec   P =  32.994 Gflop/s   B =  66.013 GB/s
 Diff = 2.603650e-15
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Matrix-vector multiplication
Now use a shared array to share the elements of x[]. Name the shared array xb[]:
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Now use a shared array to share the elements of x[]. Name the shared array xb[]:

Notice that the shared array is of the size of the number of threads (blockDim.x) and therefore smaller than x[]

Within each block, use all threads to read in the elements of xb[]

This requires splitting the matrix-vector multiplication of the block into steps
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 GPU: nthr =  256   t0 = 0.0019 sec   P =  35.375 Gflop/s   B =  70.775 GB/s
 Diff = 2.603650e-15
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This requires splitting the matrix-vector multiplication of the block into steps

Using 256 GPU threads:

[ikoutsou@front02 ex02]$ srun -N 1  --cpus-per-task=16 -p p100  --gres=gpu:1 ./matvec 4096 8192
 CPU: nthr =   16   t0 = 0.0035 sec   P =  19.384 Gflop/s   B =  38.782 GB/s
 GPU: nthr =  256   t0 = 0.0019 sec   P =  35.375 Gflop/s   B =  70.775 GB/s
 Diff = 2.603650e-15

Not much improvement compared to previous version
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Matrix-vector multiplication
Now use a shared array for both A[] and x[]. Name them Ab[] and xb[]:

Use a 2-dimensional thread block

All threads are used to fill in Ab[]

Only some threads fill in xb[]

Only some threads carry out the computation for y[]

Using thread-blocks of, e.g. 8 64:

[ikoutsou@front02 ex02]$ srun -N 1  --cpus-per-task=8 -p nehalem  --gres=gpu:1 ./matvec 8 4 4096 8192
 CPU: nthr =   16        t0 = 0.0035 sec   P =  19.278 Gflop/s   B =  38.570 GB/s
 GPU: nthr = (  8,   4)  t0 = 0.0030 sec   P =  22.430 Gflop/s   B =  44.877 GB/s
 Diff = 2.603650e-15

×
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Matrix-vector multiplication
Scanning for the optimal parameters:

 GPU: nthr = (  4,   4)  t0 = 0.0054 sec   P =  12.460 Gflop/s   B =  24.928 GB/s
 GPU: nthr = (  4,   8)  t0 = 0.0037 sec   P =  18.281 Gflop/s   B =  36.576 GB/s
 GPU: nthr = (  4,  16)  t0 = 0.0019 sec   P =  35.321 Gflop/s   B =  70.668 GB/s
 GPU: nthr = (  4,  32)  t0 = 0.0018 sec   P =  37.410 Gflop/s   B =  74.848 GB/s
 GPU: nthr = (  4,  64)  t0 = 0.0020 sec   P =  33.173 Gflop/s   B =  66.371 GB/s
 GPU: nthr = (  4, 128)  t0 = 0.0020 sec   P =  32.863 Gflop/s   B =  65.751 GB/s
 GPU: nthr = (  4, 256)  t0 = 0.0035 sec   P =  19.077 Gflop/s   B =  38.167 GB/s
 GPU: nthr = (  8,   4)  t0 = 0.0030 sec   P =  22.407 Gflop/s   B =  44.830 GB/s
 GPU: nthr = (  8,   8)  t0 = 0.0020 sec   P =  33.205 Gflop/s   B =  66.433 GB/s
 GPU: nthr = (  8,  16)  t0 = 0.0011 sec   P =  61.686 Gflop/s   B = 123.418 GB/s
 GPU: nthr = (  8,  32)  t0 = 0.0013 sec   P =  53.139 Gflop/s   B = 106.316 GB/s
 GPU: nthr = (  8,  64)  t0 = 0.0018 sec   P =  38.027 Gflop/s   B =  76.082 GB/s
 GPU: nthr = (  8, 128)  t0 = 0.0020 sec   P =  33.138 Gflop/s   B =  66.300 GB/s
 GPU: nthr = ( 16,   4)  t0 = 0.0015 sec   P =  43.351 Gflop/s   B =  86.733 GB/s
 GPU: nthr = ( 16,   8)  t0 = 0.0013 sec   P =  53.179 Gflop/s   B = 106.396 GB/s
 GPU: nthr = ( 16,  16)  t0 = 0.0010 sec   P =  67.793 Gflop/s   B = 135.635 GB/s
 GPU: nthr = ( 16,  32)  t0 = 0.0013 sec   P =  52.475 Gflop/s   B = 104.988 GB/s
 GPU: nthr = ( 16,  64)  t0 = 0.0017 sec   P =  39.566 Gflop/s   B =  79.162 GB/s
 GPU: nthr = ( 32,   4)  t0 = 0.0014 sec   P =  47.530 Gflop/s   B =  95.096 GB/s
 GPU: nthr = ( 32,   8)  t0 = 0.0015 sec   P =  44.707 Gflop/s   B =  89.447 GB/s
 GPU: nthr = ( 32,  16)  t0 = 0.0016 sec   P =  42.150 Gflop/s   B =  84.330 GB/s
 GPU: nthr = ( 32,  32)  t0 = 0.0019 sec   P =  35.967 Gflop/s   B =  71.960 GB/s
 GPU: nthr = ( 64,   4)  t0 = 0.0013 sec   P =  52.426 Gflop/s   B = 104.890 GB/s
 GPU: nthr = ( 64,   8)  t0 = 0.0015 sec   P =  45.561 Gflop/s   B =  91.155 GB/s
 GPU: nthr = ( 64,  16)  t0 = 0.0017 sec   P =  38.771 Gflop/s   B =  77.570 GB/s
 GPU: nthr = (128,   4)  t0 = 0.0013 sec   P =  52.260 Gflop/s   B = 104.559 GB/s
 GPU: nthr = (128,   8)  t0 = 0.0016 sec   P =  42.960 Gflop/s   B =  85.952 GB/s
 GPU: nthr = (256,   4)  t0 = 0.0015 sec   P =  45.502 Gflop/s   B =  91.037 GB/s

~130 GB/s is about the maximum we can obtain
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Matrix-vector multiplication
Now let's see what we get when using CUDA's implementation of the same kernel

The matrix-vector multiplication is implemented as part of CUDA's BLAS implementation

#include <cublas_v2.h>

The function to use is cublasSgemv()  see: https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv−
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The matrix-vector multiplication is implemented as part of CUDA's BLAS implementation

#include <cublas_v2.h>
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This function is general and computes: , where  and  are scalars

−

y = αAx + βy α β
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Matrix-vector multiplication
Now let's see what we get when using CUDA's implementation of the same kernel

The matrix-vector multiplication is implemented as part of CUDA's BLAS implementation

#include <cublas_v2.h>

The function to use is cublasSgemv()  see: https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv

This function is general and computes: , where  and  are scalars

In our case, we need:  and .

−

y = αAx + βy α β

α = 1 β = 0
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Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);
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Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

CUBLAS_OP_T means transpose A, because CUBLAS expects matrices with the row index running fastest

handle is just the CUBLAS context:

    cublasHandle_t handle;
    cublasCreate(&handle);

Add -lcublas to the compile command

Now CUBLAS chooses the number of threads:

[ikoutsou@front02 ex02]$ srun -N 1  --cpus-per-task=8 -p nehalem  --gres=gpu:1 ./matvec 4096 8192
 CPU: nthr =   16        t0 = 0.0037 sec   P =  18.241 Gflop/s   B =  36.495 GB/s
 GPU:                    t0 = 0.0037 sec   P =  17.944 Gflop/s   B =  35.902 GB/s
 Diff = 1.380096e-12
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Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

CUBLAS_OP_T means transpose A, because CUBLAS expects matrices with the row index running fastest

handle is just the CUBLAS context:

    cublasHandle_t handle;
    cublasCreate(&handle);

Add -lcublas to the compile command

Now CUBLAS chooses the number of threads:

[ikoutsou@front02 ex02]$ srun -N 1  --cpus-per-task=8 -p nehalem  --gres=gpu:1 ./matvec 4096 8192
 CPU: nthr =   16        t0 = 0.0037 sec   P =  18.241 Gflop/s   B =  36.495 GB/s
 GPU:                    t0 = 0.0037 sec   P =  17.944 Gflop/s   B =  35.902 GB/s
 Diff = 1.380096e-12

NVIDIA's version is not necessarily faster than our hand-tuned version
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