
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L07: GPU programming, 11 November 2024th

1 / 10

Outline
Matrix-vector multiplication on GPUs
Covering:

Shared memory

Details of GPU thread scheduling and warps

Use of ��syncthreads()

Two-dimensional thread blocks

2 / 10

Matrix-vector multiplication
Matrix vector multiplication

where , are vectors (1-dimensional) and is a matrix (2-dimensional)

In the general case is not square

, ,

y = Ax

y x A

A

AM×N xN yM

3 / 10

Matrix-vector multiplication
Matrix vector multiplication

where , are vectors (1-dimensional) and is a matrix (2-dimensional)

In the general case is not square

, ,

y = Ax

y x A

A

AM×N xN yM

= , i = 0, . . . ,Myi ∑
j=0

N−1

Aijxj

3 / 10

Matrix-vector multiplication
Matrix vector multiplication

where , are vectors (1-dimensional) and is a matrix (2-dimensional)

In the general case is not square

, ,

for(int i=0; i<m; i��) {
 y[i] = 0;
 for(int j=0; j<n; j��) {
 y[i] = y[i] + A[i][j] * x[j];
 }
}

y = Ax

y x A

A

AM×N xN yM

= , i = 0, . . . ,Myi ∑
j=0

N−1

Aijxj

3 / 10

Matrix-vector multiplication
Matrix vector multiplication

where , are vectors (1-dimensional) and is a matrix (2-dimensional)

In the general case is not square

, ,

for(int i=0; i<m; i��) {
 y[i] = 0;
 for(int j=0; j<n; j��) {
 y[i] = y[i] + A[i][j] * x[j];
 }
}

for(int i=0; i<m; i��) {
 y[i] = 0;
 for(int j=0; j<n; j��) {
 y[i] += A[i�n + j] * x[j];
 }
}

y = Ax

y x A

A

AM×N xN yM

= , i = 0, . . . ,Myi ∑
j=0

N−1

Aijxj

3 / 10

Matrix-vector multiplication
Take /onyx/data/sds406f24/l07/ex01/. for the CPU code :

[ikoutsou@front02 l07]$ cp �r /onyx/data/sds406f24/l07/ex01 .
[ikoutsou@front02 l07]$ cd ex01/.
[ikoutsou@front02 ex01]$ nvcc �arch=sm_60 -O3 -Xcompiler �fopenmp �o matvec matvec.cu
[ikoutsou@front02 ex01]$ export OMP_PLACES="cores"
[ikoutsou@front02 ex01]$ export OMP_PROC_BIND="close"
[ikoutsou@front02 ex01]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=16 �p p100 ��gres=gpu:1 ./matvec 4096 8192
 CPU� nthr = 16 t0 = 0.0036 sec P = 18.888 Gflop/s B = 37.791 GB/s
 CPU� nthr = 16 t0 = 0.0030 sec P = 22.663 Gflop/s B = 45.343 GB/s
 Diff = 0.000000e+00

 Same as last week's: /onyx/data/sds406f24/l06/ex02/

1

1

4 / 10

Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.

5 / 10

Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.

5 / 10

Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.

Straight-forward approach to begin with:

Each block is responsible for one element of y[]

Each thread must read all elements of the corresponding row of A[]

Each thread must read all elements of x[]

5 / 10

Matrix-vector multiplication
Our task is to modify the second call of the Ax() function to run on the GPU.

Straight-forward approach to begin with:

Each block is responsible for one element of y[]

Each thread must read all elements of the corresponding row of A[]

Each thread must read all elements of x[]

E.g., using 256 GPU threads:

[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=16 �p p100 ��gres=gpu:1 ./matvec 4096 8192
 CPU� nthr = 16 t0 = 0.0035 sec P = 19.108 Gflop/s B = 38.229 GB/s
 GPU� nthr = 256 t0 = 0.0020 sec P = 32.994 Gflop/s B = 66.013 GB/s
 Diff = 2.603650e-15

5 / 10

Matrix-vector multiplication
Now use a shared array to share the elements of x[]. Name the shared array xb[]:

6 / 10

Matrix-vector multiplication
Now use a shared array to share the elements of x[]. Name the shared array xb[]:

Notice that the shared array is of the size of the number of threads (blockDim.x) and therefore smaller than x[]

Within each block, use all threads to read in the elements of xb[]

This requires splitting the matrix-vector multiplication of the block into steps

6 / 10

Matrix-vector multiplication
Now use a shared array to share the elements of x[]. Name the shared array xb[]:

Notice that the shared array is of the size of the number of threads (blockDim.x) and therefore smaller than x[]

Within each block, use all threads to read in the elements of xb[]

This requires splitting the matrix-vector multiplication of the block into steps

Using 256 GPU threads:

[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=16 �p p100 ��gres=gpu:1 ./matvec 4096 8192
 CPU� nthr = 16 t0 = 0.0035 sec P = 19.384 Gflop/s B = 38.782 GB/s
 GPU� nthr = 256 t0 = 0.0019 sec P = 35.375 Gflop/s B = 70.775 GB/s
 Diff = 2.603650e-15

6 / 10

Matrix-vector multiplication
Now use a shared array to share the elements of x[]. Name the shared array xb[]:

Notice that the shared array is of the size of the number of threads (blockDim.x) and therefore smaller than x[]

Within each block, use all threads to read in the elements of xb[]

This requires splitting the matrix-vector multiplication of the block into steps

Using 256 GPU threads:

[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=16 �p p100 ��gres=gpu:1 ./matvec 4096 8192
 CPU� nthr = 16 t0 = 0.0035 sec P = 19.384 Gflop/s B = 38.782 GB/s
 GPU� nthr = 256 t0 = 0.0019 sec P = 35.375 Gflop/s B = 70.775 GB/s
 Diff = 2.603650e-15

Not much improvement compared to previous version

6 / 10

Matrix-vector multiplication
Now use a shared array for both A[] and x[]. Name them Ab[] and xb[]:

7 / 10

Matrix-vector multiplication
Now use a shared array for both A[] and x[]. Name them Ab[] and xb[]:

Use a 2-dimensional thread block

All threads are used to �ll in Ab[]

Only some threads �ll in xb[]

Only some threads carry out the computation for y[]

7 / 10

Matrix-vector multiplication
Now use a shared array for both A[] and x[]. Name them Ab[] and xb[]:

Use a 2-dimensional thread block

All threads are used to �ll in Ab[]

Only some threads �ll in xb[]

Only some threads carry out the computation for y[]

Using thread-blocks of, e.g. 8 64:

[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=8 �p nehalem ��gres=gpu:1 ./matvec 8 4 4096 8192
 CPU� nthr = 16 t0 = 0.0035 sec P = 19.278 Gflop/s B = 38.570 GB/s
 GPU� nthr = (8, 4) t0 = 0.0030 sec P = 22.430 Gflop/s B = 44.877 GB/s
 Diff = 2.603650e-15

×

7 / 10

Matrix-vector multiplication
Scanning for the optimal parameters:

 GPU� nthr = (4, 4) t0 = 0.0054 sec P = 12.460 Gflop/s B = 24.928 GB/s
 GPU� nthr = (4, 8) t0 = 0.0037 sec P = 18.281 Gflop/s B = 36.576 GB/s
 GPU� nthr = (4, 16) t0 = 0.0019 sec P = 35.321 Gflop/s B = 70.668 GB/s
 GPU� nthr = (4, 32) t0 = 0.0018 sec P = 37.410 Gflop/s B = 74.848 GB/s
 GPU� nthr = (4, 64) t0 = 0.0020 sec P = 33.173 Gflop/s B = 66.371 GB/s
 GPU� nthr = (4, 128) t0 = 0.0020 sec P = 32.863 Gflop/s B = 65.751 GB/s
 GPU� nthr = (4, 256) t0 = 0.0035 sec P = 19.077 Gflop/s B = 38.167 GB/s
 GPU� nthr = (8, 4) t0 = 0.0030 sec P = 22.407 Gflop/s B = 44.830 GB/s
 GPU� nthr = (8, 8) t0 = 0.0020 sec P = 33.205 Gflop/s B = 66.433 GB/s
 GPU� nthr = (8, 16) t0 = 0.0011 sec P = 61.686 Gflop/s B = 123.418 GB/s
 GPU� nthr = (8, 32) t0 = 0.0013 sec P = 53.139 Gflop/s B = 106.316 GB/s
 GPU� nthr = (8, 64) t0 = 0.0018 sec P = 38.027 Gflop/s B = 76.082 GB/s
 GPU� nthr = (8, 128) t0 = 0.0020 sec P = 33.138 Gflop/s B = 66.300 GB/s
 GPU� nthr = (16, 4) t0 = 0.0015 sec P = 43.351 Gflop/s B = 86.733 GB/s
 GPU� nthr = (16, 8) t0 = 0.0013 sec P = 53.179 Gflop/s B = 106.396 GB/s
 GPU� nthr = (16, 16) t0 = 0.0010 sec P = 67.793 Gflop/s B = 135.635 GB/s
 GPU� nthr = (16, 32) t0 = 0.0013 sec P = 52.475 Gflop/s B = 104.988 GB/s
 GPU� nthr = (16, 64) t0 = 0.0017 sec P = 39.566 Gflop/s B = 79.162 GB/s
 GPU� nthr = (32, 4) t0 = 0.0014 sec P = 47.530 Gflop/s B = 95.096 GB/s
 GPU� nthr = (32, 8) t0 = 0.0015 sec P = 44.707 Gflop/s B = 89.447 GB/s
 GPU� nthr = (32, 16) t0 = 0.0016 sec P = 42.150 Gflop/s B = 84.330 GB/s
 GPU� nthr = (32, 32) t0 = 0.0019 sec P = 35.967 Gflop/s B = 71.960 GB/s
 GPU� nthr = (64, 4) t0 = 0.0013 sec P = 52.426 Gflop/s B = 104.890 GB/s
 GPU� nthr = (64, 8) t0 = 0.0015 sec P = 45.561 Gflop/s B = 91.155 GB/s
 GPU� nthr = (64, 16) t0 = 0.0017 sec P = 38.771 Gflop/s B = 77.570 GB/s
 GPU� nthr = (128, 4) t0 = 0.0013 sec P = 52.260 Gflop/s B = 104.559 GB/s
 GPU� nthr = (128, 8) t0 = 0.0016 sec P = 42.960 Gflop/s B = 85.952 GB/s
 GPU� nthr = (256, 4) t0 = 0.0015 sec P = 45.502 Gflop/s B = 91.037 GB/s

~130 GB/s is about the maximum we can obtain

8 / 10

Matrix-vector multiplication
Now let's see what we get when using CUDA's implementation of the same kernel

The matrix-vector multiplication is implemented as part of CUDA's BLAS implementation

#include <cublas_v2.h>

The function to use is cublasSgemv() see: https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv−

9 / 10

https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv

Matrix-vector multiplication
Now let's see what we get when using CUDA's implementation of the same kernel

The matrix-vector multiplication is implemented as part of CUDA's BLAS implementation

#include <cublas_v2.h>

The function to use is cublasSgemv() see: https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv

This function is general and computes: , where and are scalars

−

y = αAx + βy α β

9 / 10

https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv

Matrix-vector multiplication
Now let's see what we get when using CUDA's implementation of the same kernel

The matrix-vector multiplication is implemented as part of CUDA's BLAS implementation

#include <cublas_v2.h>

The function to use is cublasSgemv() see: https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv

This function is general and computes: , where and are scalars

In our case, we need: and .

−

y = αAx + βy α β

α = 1 β = 0

9 / 10

https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemv

Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

10 / 10

Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

CUBLAS_OP_T means transpose A, because CUBLAS expects matrices with the row index running fastest

10 / 10

Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

CUBLAS_OP_T means transpose A, because CUBLAS expects matrices with the row index running fastest

handle is just the CUBLAS context:

 cublasHandle_t handle;
 cublasCreate(&handle);

Add �lcublas to the compile command

10 / 10

Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

CUBLAS_OP_T means transpose A, because CUBLAS expects matrices with the row index running fastest

handle is just the CUBLAS context:

 cublasHandle_t handle;
 cublasCreate(&handle);

Add �lcublas to the compile command

Now CUBLAS chooses the number of threads:

[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=8 �p nehalem ��gres=gpu:1 ./matvec 4096 8192
 CPU� nthr = 16 t0 = 0.0037 sec P = 18.241 Gflop/s B = 36.495 GB/s
 GPU� t0 = 0.0037 sec P = 17.944 Gflop/s B = 35.902 GB/s
 Diff = 1.380096e-12

10 / 10

Matrix-vector multiplication
Call the CUBLAS function via:

cublasSgemv(handle, CUBLAS_OP_T, n, m, &alpha, d_A, n, d_x, 1, &beta, d_y, 1);

CUBLAS_OP_T means transpose A, because CUBLAS expects matrices with the row index running fastest

handle is just the CUBLAS context:

 cublasHandle_t handle;
 cublasCreate(&handle);

Add �lcublas to the compile command

Now CUBLAS chooses the number of threads:

[ikoutsou@front02 ex01]$ srun -N 1 ��cpus�per�task=8 �p nehalem ��gres=gpu:1 ./matvec 4096 8192
 CPU� nthr = 16 t0 = 0.0037 sec P = 18.241 Gflop/s B = 36.495 GB/s
 GPU� t0 = 0.0037 sec P = 17.944 Gflop/s B = 35.902 GB/s
 Diff = 1.380096e-12

NVIDIA's version is not necessarily faster than our hand-tuned version

10 / 10

