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The Message Passing Interface
MPI: An Application Programmer Interface (API)

A library speci�cation; determines functions, their names and arguments, and their functionality

A de facto standard for programming distributed memory systems

Current speci�cation is version 4 (MPI-4.0), released June 9, 2021

For most systems you can reliably assume MPI-3.1 is in place

Several free (open) or vendor-provided implementations, e.g.:

Mvapich

OpenMPI

IntelMPI
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Current speci�cation is version 4 (MPI-4.0), released June 9, 2021

For most systems you can reliably assume MPI-3.1 is in place

Several free (open) or vendor-provided implementations, e.g.:

Mvapich

OpenMPI

IntelMPI

Distributed memory programming
Each process has its own memory domain

MPI functions facilitate:

Obtaining environment information about the running process, e.g., process id, number of processes, etc.

Achieving communication between processes, e.g. synchronization, copying of data, etc.
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Shared memory
Multiple processes share common memory (common memory address
space)

E.g. multi-core CPU, multi-socket node, GPU threads, etc.

Programming models: OpenMP, pthreads, MPI, CUDA (sort of)

Shared vs Distributed memory paradigm
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Running a program in parallel
Trivially, in Linux it is simple to run a program in parallel

ssh node01 ./my_program &
ssh node02 ./my_program &
ssh node03 ./my_program &

my_program will run on each node identically
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An MPI program is run in a similar way, but via a wrapper script that also initializes the parallel environment (environment variables, etc.)

mpirun -H node01,node02,node03 ./my_program

In practice, a scheduler is used which determines which nodes you are currently allocated, meaning you usually will not need to explicitly specify the
hostnames

mpirun ./my_program

Depending on the system, instead of mpirun you may be required mpiexec or srun which take similar (but not identical) arguments
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Linking against MPI/loading MPI modules
An MPI program includes calls to MPI functions
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For a compiled program like C, we would include a single header �le with all function de�nitions, macros, and constants

#include <mpi.h>

We would also need to link against MPI libraries; precise invocation depends on the compiler, the MPI implementation used, its version, etc., e.g.:

gcc �o my_mpi_program my_mpi_program.c -I/opt/mpi/include -L/opt/mpi/lib �lmpi

Thankfully, knowing the locations of the MPI library and include �les is never needed in practice; implementations come with wrappers that set the
appropriate include paths and linker options:

mpicc �o my_mpi_program my_mpi_program.c

For Python, a Python module, mpi4py, implements the MPI API

import mpi4py

or,  more commonly

from mpi4py import MPI
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Call MPI_Init() �rst, before any other MPI call:

MPI_Init(&argc, &argv);

where argc and argv are the typical names used for the command line variables passed to main()

When using mpi4py:

MPI functions are methods of the MPI module

Loading the module is equivalent to initializing MPI: from mpi4py import MPI

In C, before the end of the program, call MPI_Finalize(), otherwise the MPI runtime may assume your program �nished in error

#include <mpi.h>

int
main(int argc, char �argv[])
{
  MPI_Init(&argc, &argv);
  ��
    ���
    ���
    ���
  ��
  MPI_Finalize();
  return 0;
}
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from mpi4py import MPI

nproc = MPI.COMM_WORLD.Get_size()
rank = MPI.COMM_WORLD.Get_rank()
print(f" This is rank = {rank} of nproc = {nproc}")

#include <stdio.h>
#include <mpi.h>

int
main(int argc, char �argv[])
{
  MPI_Init(&argc, &argv);
  int nproc, rank;
  MPI_Comm_size(MPI_COMM_WORLD, &nproc);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  printf(" This is rank = %d of nproc = %d\n", rank, nproc);
  MPI_Finalize();
  return 0;
}

Initialization
Two functions you will almost always call

MPI_Comm_size() or MPI.COMM_WORLD.Get_size(): gives the number of parallel process running ( )

MPI_Comm_rank() or MPI.COMM_WORLD.Get_rank(): determines the rank of the process, i.e. a unique number between  and  that identi�es the
calling process

A complete example:

nproc

0 − 1nproc
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}

MPI_COMM_WORLD or MPI.COMM_WORLD is an MPI communicator

A user can partition processes into subgroups, de�ning custom
communicators (not covered here)

By default, the initial communicator is COMM_WORLD, i.e. all processes
in one communicator

No assumptions can safely be made about the order in which the printf() statements occur, i.e. the order in which each process prints is practically random

Initialization
Two functions you will almost always call

MPI_Comm_size() or MPI.COMM_WORLD.Get_size(): gives the number of parallel process running ( )

MPI_Comm_rank() or MPI.COMM_WORLD.Get_rank(): determines the rank of the process, i.e. a unique number between  and  that identi�es the
calling process

A complete example:
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[user@front02 ~]$ mpicc �o example example.c
[user@front02 ~]$ mpirun �n 5 example
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

[user@front02 ~]$ mpirun �n 5 python example.py
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Initialization
Compiling and running the previous program (assuming it is saved as example.c or example.py)
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 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

[user@front02 ~]$ mpirun �n 5 python example.py
 This is rank = 3 of nproc = 5
 This is rank = 1 of nproc = 5
 This is rank = 2 of nproc = 5
 This is rank = 4 of nproc = 5
 This is rank = 0 of nproc = 5

Note that the order is random

Initialization
Compiling and running the previous program (assuming it is saved as example.c or example.py)

Unless any explicit synchronization is implemented, the order in which each process calls the print statement is unpredictable

Most collective operations implicitly synchronize the processes
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Collective operations
The �rst set of communication functions we will look at are collective operations

Collective: all processes must be involved in the operation (as opposed to point-to-point communications)

Examples (this list is not exhaustive!):

Broadcast a variable from one process to all processes (Broadcast)

Distribute elements of an array on one process to multiple processes (Scatter)

Collect elements of arrays scattered over processes into a single process (Gather)

Sum a variable over all processes (Reduction)
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Collective operations: Broadcast
Broadcast:

  MPI_Bcast(void �buffer, int count, MPI_Datatype datatype, int root, MPI_Comm comm);

  MPI.COMM_WORLD.Bcast(buf: BufSpec, root: int = 0)
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var = np.array(var)
MPI.COMM_WORLD.Bcast(var, 0)

In C, the MPI_Datatype is important since MPI uses it to estimate the size in bytes that need to be transferred. In Python this can be deduced from the variable

In C, we can pass a scalar by using its memory address (second example above). In Python, we can use zero-dimensional numpy array for this

Full list of types available in MPI documentation. E.g. see: https://www.mpich.org/static/docs/latest/www3/Constants.html
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Collective operations: Scatter
Scatter:

MPI_Scatter(
          const void �sendbuf, int sendcount, MPI_Datatype sendtype,
          void �recvbuf, int recvcount, MPI_Datatype recvtype,
          int root, MPI_Comm comm
          );

MPI.COMM_WORLD.Scatter(
                     sendbuf: BufSpec, recvbuf: BufSpec, root: int = 0
                     )
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MPI.COMM_WORLD.Scatter(
                     sendbuf: BufSpec, recvbuf: BufSpec, root: int = 0
                     )

sendcount is the number of elements to be sent to each process

sendbuf is only relevant in the root process

Example: distribute a 12-element array from process 0, assuming 3 processes in total (including root)

double arr_all[12]; �� ��� this only needs to be def�ned on process with rank �� 0 ��
double arr_proc[4];
MPI_Scatter(arr_all, 4, MPI_DOUBLE, arr_proc, 4, MPI_DOUBLE, 0, MPI_COMM_WORLD);

arr_all = np.random.rand(12)
arr_proc = np.zeros([4])
MPI.COMM_WORLD.Scatter(arr_all, arr_proc, root = 0)
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          const void �sendbuf, int sendcount, MPI_Datatype sendtype,
          void �recvbuf, int recvcount, MPI_Datatype recvtype,
          int root, MPI_Comm comm
          );

MPI.COMM_WORLD.Scatter(
                     sendbuf: BufSpec, recvbuf: BufSpec, root: int = 0
                     )

Example: distribute each element of a 4-element array to 4 processes in total (including root)

double arr[4]; �� ��� this only needs to be def�ned on process with rank �� 0 ��
double element;
MPI_Scatter(arr, 1, MPI_DOUBLE, &element, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

arr = np.random.rand(4)
element = np.zeros([])
MPI.COMM_WORLD.Scatter(arr, element, root = 0)

Note: the initialization of element as a zero-dimensional array
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Collective operations: Gather
Gather:

MPI_Gather(
         const void �sendbuf, int sendcount, MPI_Datatype sendtype,
         void �recvbuf, int recvcount, MPI_Datatype recvtype, int root,
         MPI_Comm comm
         )
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Collective operations: Gather
Gather:

MPI_Gather(
         const void �sendbuf, int sendcount, MPI_Datatype sendtype,
         void �recvbuf, int recvcount, MPI_Datatype recvtype, int root,
         MPI_Comm comm
         )

Example: collect a 9-element array at process 0, by concatenating 3 elements from each of 3 processes in total (including root)

double arr_all[9]; �� ��� this only needs to be def�ned on process with rank �� 0 ��
double arr_proc[3];
MPI_Gather(arr_proc, 3, MPI_DOUBLE, arr_all, 3, MPI_DOUBLE, 0, MPI_COMM_WORLD);

arr_all = np.zeros([9])
arr_proc = np.random.rand(3)
MPI.COMM_WORLD.Gather(arr_proc, arr_all, root = 0)

17 / 48



Collective operations: Gather
Gather:

MPI_Gather(
         const void �sendbuf, int sendcount, MPI_Datatype sendtype,
         void �recvbuf, int recvcount, MPI_Datatype recvtype, int root,
         MPI_Comm comm
         )

Example: collect a 4-element array at process 0, by concatenating an element from each of 4 processes in total (including root)

double arr[4]; �� ��� this only needs to be def�ned on process with rank �� 0 ��
double element;
MPI_Gather(&element, 1, MPI_DOUBLE, arr, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

arr = np.zeros([4])
element = np.random.rand(1)
MPI.COMM_WORLD.Gather(element, arr, root = 0)
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MPI_Reduce(
           const void �sendbuf, void �recvbuf, int count,
           MPI_Datatype datatype, MPI_Op op, int root,
           MPI_Comm comm
           )

MPI.COMM_WORLD.Reduce(
                      sendbuf: BufSpec, recvbuf: BufSpec,
                      op: Op = SUM, root: int = 0
                      )

Collective operations: Reduction
Reduction:
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MPI_Reduce(
           const void �sendbuf, void �recvbuf, int count,
           MPI_Datatype datatype, MPI_Op op, int root,
           MPI_Comm comm
           )

MPI.COMM_WORLD.Reduce(
                      sendbuf: BufSpec, recvbuf: BufSpec,
                      op: Op = SUM, root: int = 0
                      )

Notes:

Op is an operation, e.g. MPI_SUM, MPI_PROD, etc. (MPI.SUM and MPI.PROD in Python)

In C note the need for specifying the datatype and count, the number of elements of the arrays

The operation is over all processes in comm, in this case COMM_WORLD

Collective operations: Reduction
Reduction:
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MPI_Reduce(
           const void �sendbuf, void �recvbuf, int count,
           MPI_Datatype datatype, MPI_Op op, int root,
           MPI_Comm comm
           )

MPI.COMM_WORLD.Reduce(
                      sendbuf: BufSpec, recvbuf: BufSpec,
                      op: Op = SUM, root: int = 0
                      )

Example: Sum each element of a 3-element array over all processes

double s_arr[3];
double r_arr[3]; �� ��� only needs to      *
                  *     be def�ned on root ��
MPI_Reduce(s_arr, r_arr, 3, MPI_DOUBLE,
           MPI_SUM, 0, MPI_COMM_WORLD);

s_arr = np.random.rand(3)
r_arr = np.zeros([3])
MPI.COMM_WORLD.Reduce(s_arr, r_arr, MPI.SUM, root = 0)

Collective operations: Reduction
Reduction:
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MPI_Reduce(
           const void �sendbuf, void �recvbuf, int count,
           MPI_Datatype datatype, MPI_Op op, int root,
           MPI_Comm comm
           )

MPI.COMM_WORLD.Reduce(
                      sendbuf: BufSpec, recvbuf: BufSpec,
                      op: Op = SUM, root: int = 0
                      )

Example: Sum variable var over all processes

double var;
double sum; �� ��� only needs to      *
             *     be def�ned on root ��
MPI_Reduce(&var, &sum, 1, MPI_DOUBLE,
           MPI_SUM, 0, MPI_COMM_WORLD);

var = np.random.rand(1)
sum = np.zeros([])
MPI.COMM_WORLD.Reduce(var, sum, MPI.SUM, root = 0)

Collective operations: Reduction
Reduction:

22 / 48



Collective operations
Some additional notes on variants of the collectives we have covered

Scatterv() and Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the process pool

Need specifying additional arguments containing offsets of the send or receive buffer
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Some additional notes on variants of the collectives we have covered

Scatterv() and Gatherv()

Allow specifying varying number of elements to be distributed or collected to or from the process pool

Need specifying additional arguments containing offsets of the send or receive buffer

Allreduce()

Same as Reduce(), but result is placed on all processes in the pool

Result is equivalent to Reduce() followed by an Bcast()

In-place operations

For some functions, can replace the send or receive buffer with MPI.IN_PLACE (MPI_IN_PLACE in C)
 which buffer depends on the speci�c MPI function

Instructs MPI to use the same buffer for receive and send

E.g. below, the sum will be placed in var of the root process (process with rank �� 0):

if(rank �� 0) {
    MPI_Reduce(&var, null, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
} else {
    MPI_Reduce(MPI_IN_PLACE, &var, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}

→
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Point-to-point communication
Communications that involve transfer of data between two processes

Most common case: send/receive

The sender process issues a send operation

The receiver process posts a receive operation

Asynchronous in nature: caution needed for preventing deadlocks, e.g.

Sending to a process which has not posted a matching receive

Posting a receive which does not have a matching send

Two point-to-point communications are depicted above
⮑ between i) process 0 and 1 and between ii) process 2 and 3
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Point-to-point communication
Send/Receive

MPI_Send(void �buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void �buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status �status)

MPI.COMM_WORLD.Send(buf: BufSpec, dest: int, tag: int = 0)
MPI.COMM_WORLD.Recv(buf: BufSpec, source: int = ANY_SOURCE, tag: int = ANY_TAG, status: Status = None)
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MPI_Send(void �buf, int n, MPI_Datatype type, int dest, int tag, MPI_Comm comm)
MPI_Recv(void �buf, int n, MPI_Datatype type, int srce, int tag, MPI_Comm comm, MPI_Status �status)

MPI.COMM_WORLD.Send(buf: BufSpec, dest: int, tag: int = 0)
MPI.COMM_WORLD.Recv(buf: BufSpec, source: int = ANY_SOURCE, tag: int = ANY_TAG, status: Status = None)

Note the need to specify a source and destination rank

The tag variables tags the message. In the receiving process, it must match what the sender speci�ed, or can be set to MPI_ANY_TAG (MPI.ANY_TAG in Python)

Use of MPI_ANY_SOURCE (MPI.ANY_SOURCE in Python) in Recv() means "accept data from any source"

status can be used to query the result of the receive (e.g. how many elements were received). We will set to MPI_STATUS_IGNORE
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Point-to-point communication
Send/Receive; a trivial example
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if(rank �� i) {
  MPI_Send(s_arr, 4, MPI_DOUBLE, j, 0, MPI_COMM_WORLD);
}
if(rank �� j) {
  MPI_Recv(r_arr, 4, MPI_DOUBLE, i, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_S
}

s_arr = np.random.rand(4)
r_arr = np.zeros([4])
if rank �� i:
    MPI.COMM_WORLD.Send(s_arr, j)
if rank �� j:
    MPI.COMM_WORLD.Recv(r_arr, i)

Point-to-point communication
Send/Receive; a trivial example
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Point-to-point communication
It is common in parallel applications to require that every process communicates with another process, e.g. a neighboring process
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MPI_Send(&s_var, 1, MPI_DOUBLE, rank+1, 0, MPI_COMM_WORLD);
MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, M

MPI.COMM_WORLD.Send(s_var, rank+1);
MPI.COMM_WORLD.Recv(r_var, rank-1);

Point-to-point communication
It is common in parallel applications to require that every process communicates with another process, e.g. a neighboring process

This will not work:
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MPI_Recv(&r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG, MPI_COMM_WORLD, M

MPI.COMM_WORLD.Send(s_var, rank+1);
MPI.COMM_WORLD.Recv(r_var, rank-1);

Point-to-point communication
It is common in parallel applications to require that every process communicates with another process, e.g. a neighboring process

This will not work:

It results in a deadlock:

an Recv() can only be posted once an Send() completes

an Send() can only complete if a matching Recv() is posted

One can serialize the communications, i.e. use a loop to determine the order of send/receives

Serializes communications that would otherwise be done faster in parallel

Inelegant, obscure, and error-prone
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Point-to-point communication
It is common in parallel applications to require that every process communicates with another process, e.g. a neighboring process

A more ef�cient and elegant solution is to use Sendrecv():

MPI_Sendrecv(void �sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag,
             void �recvbuf, int recvcount, MPI_Datatype recvtype, int srce, int recvtag,
             MPI_Comm comm, MPI_Status �status)

MPI.COMM_WORLD.Sendrecv(
    sendbuf: BufSpec, dest: int, sendtag: int = 0,
    recvbuf: BufSpec, source: int = ANY_SOURCE, recvtag: int = ANY_TAG,
    status: Status = None
)
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A more ef�cient and elegant solution is to use Sendrecv():

MPI_Sendrecv(void �sendbuf, int sendcount, MPI_Datatype sendtype, int dest, int sendtag,
             void �recvbuf, int recvcount, MPI_Datatype recvtype, int srce, int recvtag,
             MPI_Comm comm, MPI_Status �status)

MPI.COMM_WORLD.Sendrecv(
    sendbuf: BufSpec, dest: int, sendtag: int = 0,
    recvbuf: BufSpec, source: int = ANY_SOURCE, recvtag: int = ANY_TAG,
    status: Status = None
)

For the depicted example:

MPI_Sendrecv(&s_var, 1, MPI_DOUBLE, rank+1, 0,
             &r_var, 1, MPI_DOUBLE, rank-1, MPI_ANY_TAG,
             MPI_COMM_WORLD, MPI_STATUS_IGNORE);
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Non-blocking variants. The I stands for "immediate"

Functions return immediately, i.e. the functions don't block waiting for sendbuf to be sent or recvbuf to be received

The function MPI_Wait() is used to block until the operation has complete

MPI_Isend(sendbuf, ���, request);
  �� 
   * More code can come here, provided it 
   * does not modify sendbuf, which is
   * assumed to be "in�flight" 
   ��
MPI_Wait(request, ���);

MPI_Sendrecv_replace()

Like MPI_Sendrecv() but with a single buf rather than separate sendbuf and recvbuf
⮑ The receive message overwrites the send message
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Exercises
cp �r /onyx/data/sds406f24/l08/ex�� .

Exercises follow a common structure

Each folder includes (where ${n} below is the exercise number, i.e. 01, 02, etc.):

A .c source code �le (ex${n}.c)

A submit script (sub�ex${n}.sh)

Our work�ow will typically be:

Modify ex${n}.c as instructed

Compile the program with mpicc

Submit the job script sbatch sub�ex${n}.sh

Look at the output, which can be found in ex${n}-output.txt

Note that if you have modi�ed ex${n}.c correctly, the job should complete in less than one minute
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The MPI functions demonstrated in each exercise are:
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Exercises
Exercises are mostly complete but require some minor modi�cations by you

This is mostly to "encourage" reading and understanding the code

The MPI functions demonstrated in each exercise are:

ex01: Use of Comm_rank() and Comm_size()

ex02: Use of Bcast(), Scatter(), and Reduce()

ex03: Use of Gather()

ex04: Use of Bcast(), Scatter(), Sendrecv(), and Gather()

All exercises have been tested with speci�c versions of OpenMPI and the GNU Compiler. Please use:

module load gompi/2023a

for all exercises.

33 / 48



Exercises
Ex01

Modify ex01.c to call MPI_Comm_size() and MPI_Comm_rank() appropriately

��
 * TODO� call the appropriate MPI functions here 
 ��
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Exercises
Ex01

Modify ex01.c to call MPI_Comm_size() and MPI_Comm_rank() appropriately

��
 * TODO� call the appropriate MPI functions here 
 ��

Compile

mpicc �o ex01 ex01.c

A job script has been prepared to run ex01:

[user@front02 ex01]$ cat sub�ex01.sh
��/bin/bash
#SBATCH ��job�name=01
#SBATCH ��nodes=2
#SBATCH ��ntasks=8
#SBATCH ��ntasks�per�node=4
#SBATCH ��output=ex01-output.txt
#SBATCH ��time=00�01�00
#SBATCH ��partition=p100
#SBATCH -A sds406f24

module load gompi/2023a
mpirun ex01
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Ex01

Modify ex01.c to call MPI_Comm_size() and MPI_Comm_rank() appropriately

��
 * TODO� call the appropriate MPI functions here 
 ��

Compile

mpicc �o ex01 ex01.c

A job script has been prepared to run ex01:

[user@front02 ex01]$ cat sub�ex01.sh
��/bin/bash
#SBATCH ��job�name=01
#SBATCH ��nodes=2
#SBATCH ��ntasks=8
#SBATCH ��ntasks�per�node=4
#SBATCH ��output=ex01-output.txt
#SBATCH ��time=00�01�00
#SBATCH ��partition=p100
#SBATCH -A sds406f24

module load gompi/2023a
mpirun ex01

2 nodes, 8 processes, meaning 4 processes per node

program output will be redirected to �le ex01-output.txt
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Exercises
Ex01

Submit the job script:

[user@front02 ex01]$ sbatch sub�ex01.sh
Submitted batch job 69711
[user@front02 ex01]$
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Ex01

Submit the job script:

[user@front02 ex01]$ sbatch sub�ex01.sh
Submitted batch job 69711
[user@front02 ex01]$

If done, the �le ex01-output.txt should have been created

Inspect the �le:

[user@front02 ex01]$ cat ex01-output.txt
This is rank = 0 of nproc = 8 on node: cyc06
This is rank = 2 of nproc = 8 on node: cyc06
This is rank = 3 of nproc = 8 on node: cyc06
This is rank = 5 of nproc = 8 on node: cyc07
This is rank = 6 of nproc = 8 on node: cyc07
This is rank = 1 of nproc = 8 on node: cyc06
This is rank = 7 of nproc = 8 on node: cyc07
This is rank = 4 of nproc = 8 on node: cyc07
[user@front02 ex01]$
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Exercises
Ex01

Submit the job script:

[user@front02 ex01]$ sbatch sub�ex01.sh
Submitted batch job 69711
[user@front02 ex01]$

If done, the �le ex01-output.txt should have been created

Inspect the �le:

[user@front02 ex01]$ cat ex01-output.txt
This is rank = 0 of nproc = 8 on node: cyc06
This is rank = 2 of nproc = 8 on node: cyc06
This is rank = 3 of nproc = 8 on node: cyc06
This is rank = 5 of nproc = 8 on node: cyc07
This is rank = 6 of nproc = 8 on node: cyc07
This is rank = 1 of nproc = 8 on node: cyc06
This is rank = 7 of nproc = 8 on node: cyc07
This is rank = 4 of nproc = 8 on node: cyc07
[user@front02 ex01]$

Note the order is nondeterministic; whichever process reaches the print statement �rst prints
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Exercises
Ex02

ex02.py demonstrates the use of Scatter() and Reduce()

The �le with name array.txt includes 55,440 �oating point numbers, one per line:

[user@front02 ex02]$ head array.txt
7.913676052329088328e-01
1.879167007836126668e-01
2.343674804515035737e-01
4.707043244181141617e-02
6.272795840838938375e-01
2.725799268304553991e-01
5.803516013116442052e-01
2.356271465482765448e-01
2.982738904468156260e-01
5.372364132030218453e-01
[ikoutsou@front02 ex02]$
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We would like:

The root process to read all elements into an array array[]

The root process to broadcast the total number of elements of the array, ntot

Each process to initialize an empty array sub[] with number of elements nloc = ntot / size

The root process to scatter the elements of array array[] to all processes
⮑ Each process should receive nloc elements

Each process to sum its local elements, storing the result into sum_loc

To use a reduction operation to obtain the grand total over all 55,440 elements in the root rank

Look at ex02.py. You only need to complete some parts, as instructed by the comments with TODO

The correct result, which will be in ex02-output.txt should be:

Sum:  27777.25711
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Exercises
Ex03

This exercise demonstrates Gather()

A �le f�lenames.txt includes the �lenames of 8 �les:

[user@front02 ex03]$ cat f�lenames.txt
00.txt
01.txt
02.txt
03.txt
04.txt
05.txt
06.txt
07.txt
[user@front02 ex03]$
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A �le f�lenames.txt includes the �lenames of 8 �les:

[user@front02 ex03]$ cat f�lenames.txt
00.txt
01.txt
02.txt
03.txt
04.txt
05.txt
06.txt
07.txt
[user@front02 ex03]$

In ex03.c, the root process (process with rank �� 0) reads the �lenames and scatters one to each process

Each process then computes the Fletcher 32 checksum of one �le

You need to write an appropriate Gather() operation to collect the checksums into the root process such that it prints them correctly
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Ex03

See also ex03-scalar.c, which implements the same but with no parallelism,

[user@front02 ex03]$ srun �n 1 �p p100 ./ex03-scalar f�lenames.txt
   * 00.txt �� 04D70552
   * 01.txt �� 19708CD4
   * 02.txt �� ED737A1C
   * 03.txt �� 0C40E2D2
   * 04.txt �� F7BDE74D
   * 05.txt �� 562DDD6C
   * 06.txt �� 6F2CD2F1
   * 07.txt �� 016DB6C6
   Done 8 f�les in t = 12.953475 sec
[user@front02 ex03]$
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Ex04

In this exercise, a large array of 17,463,600 elements is read by rank 0 (n_arr = 17463600)
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neighboring ranks, needed to carry out the derivative

Now your program can proceed to correctly compute the derivative:

deriv_loc[i] = arr_loc[i-1] - 2*arr_loc[i] + arr_loc[i+1]

Use a Gather() to collect the full array of the derivative into the root process (rank = 0). The root process will then write the array to a new �le deriv.txt

If done correctly, deriv.txt will contain all +2.000000, except for the �rst and last element
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