
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L09: Parallelizing PDEs with MPI, 25  November 2024th

1 / 37



Numerical solution of PDEs
Partial Differential Equations (PDEs) arise naturally, e.g. describing time-evolution in physical systems

Consider the PDE:

u(t, ) = κ u(t, )∂t r⃗ ∇2
r⃗

r⃗

2 / 37



Numerical solution of PDEs
Partial Differential Equations (PDEs) arise naturally, e.g. describing time-evolution in physical systems

Consider the PDE:

 can be a field of temperatures at position  and time . The above PDE describes the time-evolution of , given:

An initial condition, 

A set of boundary conditions, e.g.:

 for  (zero if outside of a sphere with radius );

 for  (periodic within box of side ).

u(t, ) = κ u(t, )∂t r⃗ ∇2
r⃗

r⃗

u(t, )r⃗ r⃗ t u(t, )r⃗

u(0, )r⃗

u(t, ) = 0r⃗ >r2 R2 R

u(t, + L) = u(t, )r⃗ êi r⃗ i = 1, 2, 3 L

2 / 37



Numerical solution of PDEs
Numerical solution of PDEs requires first writing the PDE in discrete form

We will restrict to the 2-dimensional PDE (2 spatial dimensions,  and , plus time, ):

One choice of discretizing the derivative

x y t

u(t, x, y) = κ[ u(t, x, y) + u(t, x, y)]∂t ∂2x ∂2y

f(x + δ) = f(x) + δ + +O( ) ⇒
∂f(x)

∂x

f(x)∂2

∂x2
δ2

2
δ3

= +O(δ)
∂f(x)

∂x

f(x + δ) − f(x)

δ

3 / 37



Numerical solution of PDEs
For second derivative, take the central difference:

Add both sides:

Back to the heat equation:

f(x + δ) = f(x) + δ + +O( )
∂f(x)

∂x

f(x)∂2

∂x2
δ2

2
δ3

f(x − δ) = f(x) − δ + +O( )
∂f(x)

∂x

f(x)∂2

∂x2
δ2

2
δ3

≃

f(x)∂2

∂x2
f(x + δ) − 2f(x) + f(x − δ)

δ2

u(t, x, y) = κ[ u(t, x, y) + u(t, x, y)] ⇒∂t ∂2x ∂2y

=
u(t + τ, x, y) − u(t, x, y)

τ

[u(t, x + h,y) + u(t, x − h,y) + u(t, x, y + h) + u(t, x, y − h) − 4u(t, x, y)]
κ

h2

4 / 37



Numerical solution of PDEs
This allows us to write the heat equation iteration:

where  and , the hopping term:

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)]

α = τκ

h2
H

H[u(t, x, y)] = u(t, x + h,y) + u(t, x − h,y) + u(t, x, y + h) + u(t, x, y − h).

5 / 37



Numerical solution of PDEs
This allows us to write the heat equation iteration:

where  and the hopping term:

Note that stability analysis requires:

for stability of the iterations.

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)]

α = τκ

h2

H[u(t, x, y)] = u(t, x + h,y) + u(t, x − h,y) + u(t, x, y + h) + u(t, x, y − h).

α < 0.25

6 / 37



Numerical solution of PDEs
Serial code for heat equation

Copy the directory:

/onyx/data/sds406f24/l09/ex01/

to your home directory.

Included is a C source code file and a python script

Study the C file, complete the missing parts, and run it using:

[user@front02 l09]$ srun -n 1 -p p100 ./heat 256 6000 0.2

7 / 37



Numerical solution of PDEs
Serial code for heat equation

Copy the directory:

/onyx/data/sds406f24/l09/ex01/

to your home directory.

Included is a C source code file and a python script

Study the C file, complete the missing parts, and run it using:

[user@front02 l09]$ srun -n 1 -p p100 ./heat 256 6000 0.2

Arguments are:

L, the spatial extent,

T, the number of time iterations, and

alpha, defined as in the previous slide

8 / 37



Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Indexing and 2-dimensional arrays

The 2-dimensional array that holds  is stored as 1-dimensional array in memory, e.g.: v[M][N]  v[M*N]u(x,y) →

9 / 37



Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Indexing and 2-dimensional arrays

The 2-dimensional array that holds  is stored as 1-dimensional array in memory, e.g.: v[M][N]  v[M*N]

We have decided the order of the indices to be such that x runs fastest:

v[y][x]  v[y*L + x]

u(x,y) →

→

9 / 37



Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Indexing and 2-dimensional arrays

The 2-dimensional array that holds  is stored as 1-dimensional array in memory, e.g.: v[M][N]  v[M*N]

We have decided the order of the indices to be such that x runs fastest:

v[y][x]  v[y*L + x]

u(x,y) →

→

9 / 37



Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Indexing and 2-dimensional arrays

The 2-dimensional array that holds  is stored as 1-dimensional array in memory, e.g.: v[M][N]  v[M*N]

We have decided the order of the indices to be such that x runs fastest:

v[y][x]  v[y*L + x]

The C macro IDX() saves us some typing:

#define IDX(y, x) ((L+(y))%L)*L + ((L+(x))%L)

Not a function! Macros are expanded at compile time

u(x,y) →

→

9 / 37



Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Boundary and initial conditions

1. All points with x == 0 and x == L-1 are set to 1

2. All points on y == L/2 are set to 1

3. All other points are zero

4. Conditions 1. and 2. are enforced in every iteration

10 / 37



/***
 * Set the boundary condition for v[L*L]
 ***/
void
boundary_condition(double *v)
{
  for(int y=0; y<L; y++) {
    v[IDX(y,   0)] = 1;
    v[IDX(y, L-1)] = 1;
  }
  for(int x=0; x<L; x++) {
    v[IDX(L/2, x)] = 1;
  }
  return;
}
...
  for(int i=0; i<T; i++) {
    /* Apply one time-step */
    update(v0, alpha);

    /* Update boundaries */
    boundary_condition(v0);
  }

Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Boundary and initial conditions

1. All points with x == 0 and x == L-1 are set to 1

2. All points on y == L/2 are set to 1

3. All other points are zero

4. Conditions 1. and 2. are enforced in every iteration

10 / 37



/***
 * Set the boundary condition for v[L*L]
 ***/
void
boundary_condition(double *v)
{
  for(int y=0; y<L; y++) {
    v[IDX(y,   0)] = 1;
    v[IDX(y, L-1)] = 1;
  }
  for(int x=0; x<L; x++) {
    v[IDX(L/2, x)] = 1;
  }
  return;
}
...
  for(int i=0; i<T; i++) {
    /* Apply one time-step */
    update(v0, alpha);

    /* Update boundaries */
    boundary_condition(v0);
  }

Numerical solution of PDEs
Serial code for heat equation; Some implementation details
Boundary and initial conditions

1. All points with x == 0 and x == L-1 are set to 1

2. All points on y == L/2 are set to 1

3. All other points are zero

4. Conditions 1. and 2. are enforced in every iteration

10 / 37



The final distribution is stored in v0.txt

You can plot v0.txt using the python file plot.py

Numerical solution of PDEs
Serial code for heat equation

Copy the directory:

/onyx/data/sds406f24/l09/ex01/

to your home directory.

Included is a C source code file and a python script

Study the C file, complete the missing parts, and run it using:

[user@front02 l09]$ srun -n 1 -p p100 ./heat 256 6000 0.2

11 / 37



The final distribution is stored in v0.txt

You can plot v0.txt using the python file plot.py

Numerical solution of PDEs
Serial code for heat equation

Copy the directory:

/onyx/data/sds406f24/l09/ex01/

to your home directory.

Included is a C source code file and a python script

Study the C file, complete the missing parts, and run it using:

[user@front02 l09]$ srun -n 1 -p p100 ./heat 256 6000 0.2

11 / 37



Parallelization using MPI
Domain Decomposition of Partial Differential Equations (PDEs) using MPI

Parallelizing the 2-dimensional heat equation with MPI

Parallelizing the slow-running coordinate

Domain decomposition

Boundary exchange

Boundary conditions

12 / 37



Domain decomposition of PDEs
Domain decomposition is referred to when we parallelize a problem by distributing the domain over processes

In the case of the heat equation, we begin with an initial condition  and every iteration depends on the previous time  cannot parallelize in
time coordinate

However we can parallelize over the spatial domain

u(t = 0, x, y) ⇒

13 / 37



Domain decomposition of PDEs
u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

14 / 37



Domain decomposition of PDEs
u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

15 / 37



Domain decomposition of PDEs

Note the dependencies of each grid-point

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

16 / 37



Domain decomposition of PDEs

Each grid-point , for , requires  at 

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

(x, y) t + τ (x,y) t

17 / 37



Domain decomposition of PDEs

...as well as 's four nearest neighbors

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

(x, y)

18 / 37



Domain decomposition of PDEs
u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

19 / 37



Domain decomposition of PDEs

Assume we are partitioning over the  direction

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

y

20 / 37



Domain decomposition of PDEs

Assume we are partitioning over the  direction

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

y

21 / 37



Domain decomposition of PDEs

Assume we are partitioning over the  direction

For all processes, there are missing dependencies for  and 

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

y

y = 0 y = − 1ly

22 / 37



Domain decomposition of PDEs

The solution is to allocate "halos". Extra space to store the neighboring rank's data

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

23 / 37



Domain decomposition of PDEs

Communication proceeds in two steps

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

24 / 37



Domain decomposition of PDEs

Communication proceeds in two steps

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

25 / 37



Domain decomposition of PDEs

The "backwards boundaries" are communicated "backwards" and received from the "forwards" process

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

26 / 37



Domain decomposition of PDEs

Now the halos include the (rank+1)'s boundaries; the neighbors for  are available

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

y = ly

27 / 37



Domain decomposition of PDEs
u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

28 / 37



Domain decomposition of PDEs

The "forward boundaries" are communicated "forwards" and received from the "backwards" process

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

29 / 37



Domain decomposition of PDEs

Now the halos include the (rank-1)'s boundaries; the neighbors for  are available

u(t + τ, x, y) = u(t, x, y)(1 − 4α) + αH[u(t, x, y)],

y = −1

30 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

Copy the directory:

/onyx/data/sds406f24/l09/ex02/

to your home directory.

Included is a C file that includes MPI

It is incomplete, and you must complete the missing sections

Once done you can run it using the heat.sh Slurm script

It should produce exactly the same result as the serial version

31 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

1st TODO

Fix the IDX() macro

Remember, the extent in x is the same

The extent in y is now shorter. But also, there is space allocated before y=0 and after y=ly-1

32 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

2nd TODO

Fix the write-function

We want each rank to write, in order, its part of the array, appending to a single file

You need to ensure serialization of the rank writing

33 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

3rd TODO

Fix the function that sets the boundary conditions

Use the same boundary conditions as in the serial version

You need to think about which rank holds which grid-points

34 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

4th TODO

Fix the function that communicates the boundaries, filling in the "halos" of each process

You need to do two communications

A Send to the next neighbor/receive from the previous neighbor

A Send to the previous neighbor/receive from the next neighbor

35 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

5th TODO

Complete the update of the field v in function update()

How will this be different from the serial version?

36 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

5th TODO

Complete the update of the field v in function update()

How will this be different from the serial version?

When done

Compile with mpicc

Run with heat.sh

The resulting output v0.txt should be identical to the serial version

36 / 37



Domain decomposition for the heat equation
MPI parallelization of the heat equation

5th TODO

Complete the update of the field v in function update()

How will this be different from the serial version?

When done

Compile with mpicc

Run with heat.sh

The resulting output v0.txt should be identical to the serial version

E.g.

[ikoutsou@front02 ex02]$ diff v0.txt ../ex01/v0.txt
[ikoutsou@front02 ex02]$

No output means no differences found

36 / 37



Strong scaling of the MPI-parallelized heat equation solution

For next lesson:

 Plot against inverse time-to-solution rather than speed-up

 Include in the plot the scalar version of ex01 at 

⇒

⇒ = 1nproc

37 / 37




