
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L10: MPI custom types and MPI-I/O, 2 December 2024nd

1 / 17

So far, we parallelized in the slowest running index () which meant that
we needed to communicate continuous elements of the arrays between
neighbors.

Now we will consider parallelizing of the heat equation in the -
dimension

We need to communicate the boundaries of

This means we need to communicate non-contiguous elements

Parallelization of PDEs

y

x

y

2 / 17

So far, we parallelized in the slowest running index () which meant that
we needed to communicate continuous elements of the arrays between
neighbors.

Now we will consider parallelizing of the heat equation in the -
dimension

We need to communicate the boundaries of

This means we need to communicate non-contiguous elements

Parallelization of PDEs

y

x

y

2 / 17

So far, we parallelized in the slowest running index () which meant that
we needed to communicate continuous elements of the arrays between
neighbors.

Now we will consider parallelizing of the heat equation in the -
dimension

We need to communicate the boundaries of

This means we need to communicate non-contiguous elements

Could use temporary arrays to copy boundaries before communication

Parallelization of PDEs

y

x

y

2 / 17

So far, we parallelized in the slowest running index () which meant that
we needed to communicate continuous elements of the arrays between
neighbors.

Now we will consider parallelizing of the heat equation in the -
dimension

We need to communicate the boundaries of

This means we need to communicate non-contiguous elements

Could use temporary arrays to copy boundaries before communication

Alternatively, so-called custom MPI types

Parallelization of PDEs

y

x

y

2 / 17

Custom types
MPI_DOUBLE, MPI_FLOAT, MPI_INT, etc. are pre-de�ned MPI types

User-de�ned types allow for custom data types

Using types with strides provides for a convenient way to arrange sending and receiving non-continuous data

3 / 17

Custom types
MPI_DOUBLE, MPI_FLOAT, MPI_INT, etc. are pre-de�ned MPI types

User-de�ned types allow for custom data types

Using types with strides provides for a convenient way to arrange sending and receiving non-continuous data

MPI Vector type
int MPI_Type_vector(int count, int blocklength, int stride,
 MPI_Datatype oldtype, MPI_Datatype �newtype)

3 / 17

MPI_Datatype dtype;
MPI_Type_vector(3, 2, 8, MPI_DOUBLE, &dtype);
MPI_Type_commit(&dtype);

Can then specify this new type in MPI functions
 e.g. in an MPI_Send()

MPI_Send(&a[0], 1, dtype, dest, tag, MPI_COMM_WORLD);

Custom types
MPI_DOUBLE, MPI_FLOAT, MPI_INT, etc. are pre-de�ned MPI types

User-de�ned types allow for custom data types

Using types with strides provides for a convenient way to arrange sending and receiving non-continuous data

MPI Vector type
int MPI_Type_vector(int count, int blocklength, int stride,
 MPI_Datatype oldtype, MPI_Datatype �newtype)

One of the most basic ways to create a custom MPI type

The following corresponds to the �gure
 pick the 6 highlighted elements from the 24-element array→

→

3 / 17

Custom types
MPI Vector type

See ex01:

The root process initializes an array of L elements, r[L]

All processes post a non-blocking receive (MPI_Irecv()) for L/nproc elements

The root process will send L/nproc elements to each process, one-by-one, in a loop

We would like:

rank 0 to receive the elements: r[0], r[nproc-1], r[2*nproc-1], etc.

rank 1 to receive the elements: r[1], r[nproc], r[2*nproc], etc.

rank 2 to receive the elements: r[2], r[nproc+1], r[2*nproc+1], etc.

and so on

4 / 17

Custom types
MPI Vector type

See ex01:

The root process initializes an array of L elements, r[L]

All processes post a non-blocking receive (MPI_Irecv()) for L/nproc elements

The root process will send L/nproc elements to each process, one-by-one, in a loop

We would like:

rank 0 to receive the elements: r[0], r[nproc-1], r[2*nproc-1], etc.

rank 1 to receive the elements: r[1], r[nproc], r[2*nproc], etc.

rank 2 to receive the elements: r[2], r[nproc+1], r[2*nproc+1], etc.

and so on

/***
 * TODO� Def�ne the new datatype that strides by `nproc' elements
 ***/
MPI_Datatype dtype;
MPI_Type_vector(�� TODO ��);
MPI_Type_commit(&dtype);

4 / 17

Parallel I/O
Binary vs text // Binary I/O // Parallel I/O with MPI

5 / 17

Binary �le I/O
So far we have been writing �les as formatted text

This requires converting the internal, binary representation of �oating point numbers into human readable representations, e.g. as characters, using a speci�c
encoding, usually ASCII

However, the more general and �exible way to store data is in binary. This allows storing data of multiple types, multidimensional data, etc.

Think of it as storing the same binary data as in a memory buffer to a �le

6 / 17

Binary �le I/O
So far we have been writing �les as formatted text

This requires converting the internal, binary representation of �oating point numbers into human readable representations, e.g. as characters, using a speci�c
encoding, usually ASCII

However, the more general and �exible way to store data is in binary. This allows storing data of multiple types, multidimensional data, etc.

Think of it as storing the same binary data as in a memory buffer to a �le

double x[L];
�� Fill x[] ��
FILE �fp = fopen("f�lename", "w");
fwrite(&x[0], sizeof(double), L, fp);
fclose(fp);

double y[L];
FILE �fp = fopen("f�lename", "r");
fread(&y[0], sizeof(double), L, fp);
fclose(fp);
�� Do something with y[] ��

6 / 17

Binary �le I/O
In Python, the struct module can be used to convert to/from a byte string

Alternatively you can use numpy and the numpy.fromf�le() function

import struct

fp = open("out", "br")
r = fp.read()
fp.close()
n = len(r)��8
r = struct.unpack(n�"d", r)

import numpy as np

r = np.fromf�le("out", dtype=np.float64)

7 / 17

Binary �le I/O
In Python, the struct module can be used to convert to/from a byte string

Alternatively you can use numpy and the numpy.fromf�le() function

import struct

fp = open("out", "br")
r = fp.read()
fp.close()
n = len(r)��8
r = struct.unpack(n�"d", r)

import numpy as np

r = np.fromf�le("out", dtype=np.float64)

Inspecting �les on the command line:

The Linux commands more and less interpret �les as text. A text �le is still a binary �le, but its contents are intended to be interpreted as characters

The Linux command od can be used to interpret �les in other formats, e.g. octal, hexadecimal, �oating point, etc. in addition to text. od stands for "Octal
dump".

7 / 17

Binary �le I/O
In Python, the struct module can be used to convert to/from a byte string

Alternatively you can use numpy and the numpy.fromf�le() function

import struct

fp = open("out", "br")
r = fp.read()
fp.close()
n = len(r)��8
r = struct.unpack(n�"d", r)

import numpy as np

r = np.fromf�le("out", dtype=np.float64)

Inspecting �les on the command line:

The Linux commands more and less interpret �les as text. A text �le is still a binary �le, but its contents are intended to be interpreted as characters

The Linux command od can be used to interpret �les in other formats, e.g. octal, hexadecimal, �oating point, etc. in addition to text. od stands for "Octal
dump".

See ex02 which contains some examples demonstrating binary read/write

7 / 17

Parallel I/O
Variants:

"Non-parallel" I/O: all send to one rank, which carries out I/O our approach so far, with the exception of the heat equation example

Independent parallel I/O: each rank writes/reads to/from its own �le

"Cooperative" parallel I/O: each rank writes/reads to/from different parts of the same �le

←

8 / 17

Parallel I/O
Variants:

"Non-parallel" I/O: all send to one rank, which carries out I/O our approach so far, with the exception of the heat equation example

Independent parallel I/O: each rank writes/reads to/from its own �le

"Cooperative" parallel I/O: each rank writes/reads to/from different parts of the same �le

Cooperative parallel I/O
Requires parallelism aware software layer (MPI-I/O)

Performance depends on underlying hardware and �lesystem

In MPI context

Writing to a �le sending a buffer

Reading from a �le receiving a buffer

←

⇔

⇔

8 / 17

Parallel I/O
Variants:

"Non-parallel" I/O: all send to one rank, which carries out I/O our approach so far, with the exception of the heat equation example

Independent parallel I/O: each rank writes/reads to/from its own �le

"Cooperative" parallel I/O: each rank writes/reads to/from different parts of the same �le

Cooperative parallel I/O
Requires parallelism aware software layer (MPI-I/O)

Performance depends on underlying hardware and �lesystem

In MPI context

Writing to a �le sending a buffer

Reading from a �le receiving a buffer

This means custom types can be used in the same way as in MPI_Send() and MPI_Recv

When writing a custom type can be used to pick out speci�c elements of the array to be written

When reading it can be used to pick the speci�c elements of the array to be �lled

Extensive use of custom MPI types is also typically used to set "�le views". These determine which parts of the �le will be picked to be read or written.

←

⇔

⇔

8 / 17

MPI-I/O
MPI_File_open, MPI_File_write_at, MPI_File_write_all, etc.

int MPI_File_open(MPI_Comm comm, const char �f�lename,
 int amode, MPI_Info info,
 MPI_File �fh)

Example:

MPI_File fh;
MPI_File_open(MPI_COMM_WORLD, "out", MPI_WRONLY | MPI_CREATE, MPI_INFO_NULL, &fh)

Open �le with �lename out in write-only mode; create if it does not exist

Options for amode: MPI_MODE_APPEND, MPI_MODE_CREATE, MPI_MODE_DELETE_ON_CLOSE, MPI_MODE_EXCL, MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_SEQUENTIAL,
MPI_MODE_WRONLY, MPI_MODE_UNIQUE_OPEN

9 / 17

MPI-I/O
Use MPI_File_write_at() and MPI_File_read_at() write or read different parts of a �le according to an offset.

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void �buf,
 int count, MPI_Datatype datatype, MPI_Status �status)

E.g. see ex03

Each rank allocates and �lls an array of N random numbers

MPI_File_write_at() is used to write the data into a �le, in order of the ranks

10 / 17

MPI-I/O
Use MPI_File_write_at() and MPI_File_read_at() write or read different parts of a �le according to an offset.

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void �buf,
 int count, MPI_Datatype datatype, MPI_Status �status)

E.g. see ex03

Each rank allocates and �lls an array of N random numbers

MPI_File_write_at() is used to write the data into a �le, in order of the ranks

11 / 17

MPI-I/O
File views

File views determine which part of the �le each process can see

Same machinery as in sending/receiving custom types, e.g. using vector types with strides, etc.

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
 MPI_Datatype f�letype, const char �datarep, MPI_Info info)

etype: the element type (e.g. MPI_DOUBLE)

f�letype: the type used for the �le view. Determines which part of the �le the rank can "view"

datarep: use "native" unless there is a need to explicitly set a different data representation

In case we are writing to a �le:

Think of the f�letype as the custom type on the buffer of the receiving rank (which is now the �le we are writing to)

Think of the MPI_File_write() call as the same as an MPI_Send()

12 / 17

MPI-I/O
File views

ex04 demonstrate the basic use of a "�le view"

Start nproc processes

Each rank allocates and �lls N double precision numbers

Rank 0 �lls it with 1.0, 2.0, ..., N-1,

Rank 1 �lls it with N, N+1, ..., 2*N-1

etc.

We want the �le to be written such that:

The �rst nproc elements in the �le are the �rst elements of all processes

The next nproc elements in the �le are the second elements of all processes

etc.

13 / 17

MPI-I/O
File views

ex04 demonstrate the basic use of a "�le view"

Start nproc processes

Each rank allocates and �lls N double precision numbers

Rank 0 �lls it with 1.0, 2.0, ..., N-1,

Rank 1 �lls it with N, N+1, ..., 2*N-1

etc.

We want the �le to be written such that:

The �rst nproc elements in the �le are the �rst elements of all processes

The next nproc elements in the �le are the second elements of all processes

etc.

13 / 17

Communication of the non-contiguous elements can be achieved using a
vector custom data type

Writing the non-contiguous elements to a binary �le in parallel using
MPI-I/O and �le views

The included plot.py takes care of reading from a binary �le but is
otherwise the same as before

Parallelization of PDEs
The heat equation program with parallelization over the -coordinate and MPI-I/O

Exercise ex05, with missing parts marked as TODOs

x

14 / 17

Parallelization of PDEs
��
 * TODO_1
 ��
#def�ne IDX(y, x)

15 / 17

Parallelization of PDEs
��
 * TODO_1
 ��
#def�ne IDX(y, x)

/***
 * Set the boundary condition for v[L*(lx+2)]
 ***/
void
boundary_condition(double �v)
{
 int size, rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 ��
 * TODO_2
 ��

 ��
 * Which rank has x �� 0?
 ��
 if(rank �� �� ��) {
 �� ��� ��
 }

 ��
 * Which rank has x �� L-1?
 ��
 if(rank �� �� ��) {
 �� ��� ��
 }

 ��
 * Set y = L/2 to 1
 ��
���

15 / 17

Parallelization of PDEs
/***
 * Update the boundary of v[L*(lx+2)], by exchanging "halos"
 ***/
void
update_boundary(double �v)
{
 int size, rank;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 ��
 * TODO_3
 ��

 MPI_Datatype dtype;
 MPI_Type_vector(�� ��� ��);
 MPI_Type_commit(&dtype);

 �� Send x = 0 boundary to lx+1 of backward neighbor ��
 MPI_Sendrecv(�� ��� ��);

 �� Send x = lx-1 boundary to -1 of forward neighbor ��
 MPI_Sendrecv(�� ��� ��);
 ���

16 / 17

Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "�le view" and one for the "data view"

17 / 17

Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "�le view" and one for the "data view"

17 / 17

