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So far, we parallelized in the slowest running index ( ) which meant that
we needed to communicate continuous elements of the arrays between
neighbors.

Now we will consider parallelizing of the heat equation in the -
dimension

We need to communicate the boundaries of 

This means we need to communicate non-contiguous elements
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So far, we parallelized in the slowest running index ( ) which meant that
we needed to communicate continuous elements of the arrays between
neighbors.

Now we will consider parallelizing of the heat equation in the -
dimension

We need to communicate the boundaries of 

This means we need to communicate non-contiguous elements

Could use temporary arrays to copy boundaries before communication

Alternatively, so-called custom MPI types
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Custom types
MPI_DOUBLE, MPI_FLOAT, MPI_INT, etc. are pre-de�ned MPI types

User-de�ned types allow for custom data types

Using types with strides provides for a convenient way to arrange sending and receiving non-continuous data
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MPI Vector type
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MPI_Datatype dtype;
MPI_Type_vector(3, 2, 8, MPI_DOUBLE, &dtype);
MPI_Type_commit(&dtype);

Can then specify this new type in MPI functions
 e.g. in an MPI_Send()

MPI_Send(&a[0], 1, dtype, dest, tag, MPI_COMM_WORLD);

Custom types
MPI_DOUBLE, MPI_FLOAT, MPI_INT, etc. are pre-de�ned MPI types

User-de�ned types allow for custom data types

Using types with strides provides for a convenient way to arrange sending and receiving non-continuous data

MPI Vector type
int MPI_Type_vector(int count, int blocklength, int stride,
                    MPI_Datatype oldtype, MPI_Datatype �newtype)

One of the most basic ways to create a custom MPI type

The following corresponds to the �gure
 pick the 6 highlighted elements from the 24-element array→

→
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Custom types
MPI Vector type

See ex01:

The root process initializes an array of L elements, r[L]

All processes post a non-blocking receive (MPI_Irecv()) for L/nproc elements

The root process will send L/nproc elements to each process, one-by-one, in a loop

We would like:

rank 0 to receive the elements: r[0], r[nproc-1], r[2*nproc-1], etc.

rank 1 to receive the elements: r[1], r[ nproc], r[ 2*nproc], etc.

rank 2 to receive the elements: r[2], r[nproc+1], r[2*nproc+1], etc.

and so on
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All processes post a non-blocking receive (MPI_Irecv()) for L/nproc elements

The root process will send L/nproc elements to each process, one-by-one, in a loop

We would like:

rank 0 to receive the elements: r[0], r[nproc-1], r[2*nproc-1], etc.

rank 1 to receive the elements: r[1], r[ nproc], r[ 2*nproc], etc.

rank 2 to receive the elements: r[2], r[nproc+1], r[2*nproc+1], etc.

and so on

/*** 
 * TODO� Def�ne the new datatype that strides by `nproc' elements 
 ***/
MPI_Datatype dtype;
MPI_Type_vector(�� TODO ��);
MPI_Type_commit(&dtype);
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Parallel I/O
Binary vs text // Binary I/O // Parallel I/O with MPI
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Binary �le I/O
So far we have been writing �les as formatted text

This requires converting the internal, binary representation of �oating point numbers into human readable representations, e.g. as characters, using a speci�c
encoding, usually ASCII

However, the more general and �exible way to store data is in binary. This allows storing data of multiple types, multidimensional data, etc.

Think of it as storing the same binary data as in a memory buffer to a �le
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So far we have been writing �les as formatted text

This requires converting the internal, binary representation of �oating point numbers into human readable representations, e.g. as characters, using a speci�c
encoding, usually ASCII

However, the more general and �exible way to store data is in binary. This allows storing data of multiple types, multidimensional data, etc.

Think of it as storing the same binary data as in a memory buffer to a �le

double x[L];
�� Fill x[] ��
FILE �fp = fopen("f�lename", "w");
fwrite(&x[0], sizeof(double), L, fp);
fclose(fp);

double y[L];
FILE �fp = fopen("f�lename", "r");
fread(&y[0], sizeof(double), L, fp);
fclose(fp);
�� Do something with y[] ��
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Binary �le I/O
In Python, the struct module can be used to convert to/from a byte string

Alternatively you can use numpy and the numpy.fromf�le() function

import struct

fp = open("out", "br")
r = fp.read()
fp.close()
n = len(r)��8
r = struct.unpack(n�"d", r)

import numpy as np

r = np.fromf�le("out", dtype=np.float64)
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Inspecting �les on the command line:

The Linux commands more and less interpret �les as text. A text �le is still a binary �le, but its contents are intended to be interpreted as characters

The Linux command od can be used to interpret �les in other formats, e.g. octal, hexadecimal, �oating point, etc. in addition to text. od stands for "Octal
dump".
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Alternatively you can use numpy and the numpy.fromf�le() function

import struct

fp = open("out", "br")
r = fp.read()
fp.close()
n = len(r)��8
r = struct.unpack(n�"d", r)

import numpy as np

r = np.fromf�le("out", dtype=np.float64)

Inspecting �les on the command line:

The Linux commands more and less interpret �les as text. A text �le is still a binary �le, but its contents are intended to be interpreted as characters

The Linux command od can be used to interpret �les in other formats, e.g. octal, hexadecimal, �oating point, etc. in addition to text. od stands for "Octal
dump".

See ex02 which contains some examples demonstrating binary read/write
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Parallel I/O
Variants:

"Non-parallel" I/O: all send to one rank, which carries out I/O  our approach so far, with the exception of the heat equation example

Independent parallel I/O: each rank writes/reads to/from its own �le

"Cooperative" parallel I/O: each rank writes/reads to/from different parts of the same �le

←
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Parallel I/O
Variants:

"Non-parallel" I/O: all send to one rank, which carries out I/O  our approach so far, with the exception of the heat equation example

Independent parallel I/O: each rank writes/reads to/from its own �le

"Cooperative" parallel I/O: each rank writes/reads to/from different parts of the same �le

Cooperative parallel I/O
Requires parallelism aware software layer (MPI-I/O)

Performance depends on underlying hardware and �lesystem

In MPI context

Writing to a �le  sending a buffer

Reading from a �le  receiving a buffer

This means custom types can be used in the same way as in MPI_Send() and MPI_Recv

When writing a custom type can be used to pick out speci�c elements of the array to be written

When reading it can be used to pick the speci�c elements of the array to be �lled

Extensive use of custom MPI types is also typically used to set "�le views". These determine which parts of the �le will be picked to be read or written.

←

⇔

⇔
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MPI-I/O
MPI_File_open, MPI_File_write_at, MPI_File_write_all, etc.

int MPI_File_open(MPI_Comm comm, const char �f�lename,
                  int amode, MPI_Info info,
                  MPI_File �fh)

Example:

MPI_File fh;
MPI_File_open(MPI_COMM_WORLD, "out", MPI_WRONLY | MPI_CREATE, MPI_INFO_NULL, &fh)

Open �le with �lename out in write-only mode; create if it does not exist

Options for amode: MPI_MODE_APPEND, MPI_MODE_CREATE, MPI_MODE_DELETE_ON_CLOSE, MPI_MODE_EXCL, MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_SEQUENTIAL,
MPI_MODE_WRONLY, MPI_MODE_UNIQUE_OPEN
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MPI-I/O
Use MPI_File_write_at() and MPI_File_read_at() write or read different parts of a �le according to an offset.

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void �buf,
                      int count, MPI_Datatype datatype, MPI_Status �status)

E.g. see ex03

Each rank allocates and �lls an array of N random numbers

MPI_File_write_at() is used to write the data into a �le, in order of the ranks
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MPI-I/O
File views

File views determine which part of the �le each process can see

Same machinery as in sending/receiving custom types, e.g. using vector types with strides, etc.

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
                  MPI_Datatype f�letype, const char �datarep, MPI_Info info)

etype: the element type (e.g. MPI_DOUBLE)

f�letype: the type used for the �le view. Determines which part of the �le the rank can "view"

datarep: use "native" unless there is a need to explicitly set a different data representation

In case we are writing to a �le:

Think of the f�letype as the custom type on the buffer of the receiving rank (which is now the �le we are writing to)

Think of the MPI_File_write() call as the same as an MPI_Send()
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MPI-I/O
File views

ex04 demonstrate the basic use of a "�le view"

Start nproc processes

Each rank allocates and �lls N double precision numbers

Rank 0 �lls it with 1.0, 2.0, ..., N-1,

Rank 1 �lls it with N, N+1, ..., 2*N-1

etc.

We want the �le to be written such that:

The �rst nproc elements in the �le are the �rst elements of all processes

The next nproc elements in the �le are the second elements of all processes

etc.

13 / 17



MPI-I/O
File views

ex04 demonstrate the basic use of a "�le view"

Start nproc processes

Each rank allocates and �lls N double precision numbers

Rank 0 �lls it with 1.0, 2.0, ..., N-1,

Rank 1 �lls it with N, N+1, ..., 2*N-1

etc.

We want the �le to be written such that:

The �rst nproc elements in the �le are the �rst elements of all processes

The next nproc elements in the �le are the second elements of all processes

etc.

13 / 17



Communication of the non-contiguous elements can be achieved using a
vector custom data type

Writing the non-contiguous elements to a binary �le in parallel using
MPI-I/O and �le views

The included plot.py takes care of reading from a binary �le but is
otherwise the same as before

Parallelization of PDEs
The heat equation program with parallelization over the -coordinate and MPI-I/O

Exercise ex05, with missing parts marked as TODOs

x
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Parallelization of PDEs
��
 * TODO_1 
 ��
#def�ne IDX(y, x)
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Parallelization of PDEs
��
 * TODO_1 
 ��
#def�ne IDX(y, x)

/***
 * Set the boundary condition for v[L*(lx+2)]
 ***/
void
boundary_condition(double �v)
{
  int size, rank;
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);
  MPI_Comm_size(MPI_COMM_WORLD, &size);

  ��
   * TODO_2
   ��

  ��
   * Which rank has x �� 0?
   ��
  if(rank �� �� ��) {
    �� ��� ��
  }

  ��
   * Which rank has x �� L-1?
   ��
  if(rank �� �� ��) {
    �� ��� ��
  }

  ��
   * Set y = L/2 to 1
   ��
���
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Parallelization of PDEs
/***
 * Update the boundary of v[L*(lx+2)], by exchanging "halos"
 ***/
void
update_boundary(double �v)
{
  int size, rank;
  MPI_Comm_size(MPI_COMM_WORLD, &size);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  ��
   * TODO_3
   ��

  MPI_Datatype dtype;
  MPI_Type_vector(�� ��� ��);
  MPI_Type_commit(&dtype);

  �� Send x = 0 boundary to lx+1 of backward neighbor ��
  MPI_Sendrecv(�� ��� ��);

  �� Send x = lx-1 boundary to -1 of forward neighbor ��
  MPI_Sendrecv(�� ��� ��);
  ���
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Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "�le view" and one for the "data view"
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