
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L11: MPI custom types and MPI-I/O (contd. from L10), 9 December 2024th

1 / 8

MPI-I/O
File views

File views determine which part of the file each process can see

Same machinery as in sending/receiving custom types, e.g. using vector types with strides, etc.

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
 MPI_Datatype filetype, const char *datarep, MPI_Info info)

etype: the element type (e.g. MPI_DOUBLE)

filetype: the type used for the file view. Determines which part of the file the rank can "view"

datarep: use "native" unless there is a need to explicitly set a different data representation

In case we are writing to a file:

Think of the filetype as the custom type on the buffer of the receiving rank (which is now the file we are writing to)

Think of the MPI_File_write() call as the same as an MPI_Send()

2 / 8

MPI-I/O
File views

l10/ex04 (or l11/ex01) demonstrate the basic use of a "file view"

Start nproc processes

Each rank allocates and fills N double precision numbers

Rank 0 fills it with 1.0, 2.0, ..., N-1,

Rank 1 fills it with N, N+1, ..., 2*N-1

etc.

We want the file to be written such that:

The first nproc elements in the file are the first elements of all processes

The next nproc elements in the file are the second elements of all processes

etc.

3 / 8

MPI-I/O
File views

l10/ex04 (or l11/ex01) demonstrate the basic use of a "file view"

Start nproc processes

Each rank allocates and fills N double precision numbers

Rank 0 fills it with 1.0, 2.0, ..., N-1,

Rank 1 fills it with N, N+1, ..., 2*N-1

etc.

We want the file to be written such that:

The first nproc elements in the file are the first elements of all processes

The next nproc elements in the file are the second elements of all processes

etc.

3 / 8

Communication of the non-contiguous elements can be achieved using a
vector custom data type

Writing the non-contiguous elements to a binary file in parallel using
MPI-I/O and file views

The included plot.py takes care of reading from a binary file but is
otherwise the same as before

Parallelization of PDEs
The heat equation program with parallelization over the -coordinate and MPI-I/O

Exercise l10/ex05 (or l11/ex02), with missing parts marked as TODOs

x

4 / 8

Parallelization of PDEs
/*
 * TODO_1
 */
#define IDX(y, x)

5 / 8

Parallelization of PDEs
/*
 * TODO_1
 */
#define IDX(y, x)

/***
 * Set the boundary condition for v[L*(lx+2)]
 ***/
void
boundary_condition(double *v)
{
 int size, rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 /*
 * TODO_2
 */

 /*
 * Which rank has x == 0?
 */
 if(rank == /* */) {
 /* ... */
 }

 /*
 * Which rank has x == L-1?
 */
 if(rank == /* */) {
 /* ... */
 }

 /*
 * Set y = L/2 to 1
 */
...

5 / 8

Parallelization of PDEs
/***
 * Update the boundary of v[L*(lx+2)], by exchanging "halos"
 ***/
void
update_boundary(double *v)
{
 int size, rank;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /*
 * TODO_3
 */

 MPI_Datatype dtype;
 MPI_Type_vector(/* ... */);
 MPI_Type_commit(&dtype);

 /* Send x = 0 boundary to lx+1 of backward neighbor */
 MPI_Sendrecv(/* ... */);

 /* Send x = lx-1 boundary to -1 of forward neighbor */
 MPI_Sendrecv(/* ... */);
 ...

6 / 8

Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "file view" and one for the "data view"

7 / 8

Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "file view" and one for the "data view"

7 / 8

Strong scaling of the MPI-parallelized heat equation solution

 Use at most two nodes, 32 processes per node

 Plot against inverse time-to-solution rather than speed-up

 Scale both parallelizations over and separately

 Include in the plot the scalar version of at

⇒

⇒

⇒ x y

⇒ = 1nproc

8 / 8

