
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L11: MPI custom types and MPI-I/O (contd. from L10), 9 December 2024th

1 / 8

MPI-I/O
File views

File views determine which part of the �le each process can see

Same machinery as in sending/receiving custom types, e.g. using vector types with strides, etc.

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,
 MPI_Datatype f�letype, const char �datarep, MPI_Info info)

etype: the element type (e.g. MPI_DOUBLE)

f�letype: the type used for the �le view. Determines which part of the �le the rank can "view"

datarep: use "native" unless there is a need to explicitly set a different data representation

In case we are writing to a �le:

Think of the f�letype as the custom type on the buffer of the receiving rank (which is now the �le we are writing to)

Think of the MPI_File_write() call as the same as an MPI_Send()

2 / 8

MPI-I/O
File views

l10/ex04 (or l11/ex01) demonstrate the basic use of a "�le view"

Start nproc processes

Each rank allocates and �lls N double precision numbers

Rank 0 �lls it with 1.0, 2.0, ..., N-1,

Rank 1 �lls it with N, N+1, ..., 2*N-1

etc.

We want the �le to be written such that:

The �rst nproc elements in the �le are the �rst elements of all processes

The next nproc elements in the �le are the second elements of all processes

etc.

3 / 8

MPI-I/O
File views

l10/ex04 (or l11/ex01) demonstrate the basic use of a "�le view"

Start nproc processes

Each rank allocates and �lls N double precision numbers

Rank 0 �lls it with 1.0, 2.0, ..., N-1,

Rank 1 �lls it with N, N+1, ..., 2*N-1

etc.

We want the �le to be written such that:

The �rst nproc elements in the �le are the �rst elements of all processes

The next nproc elements in the �le are the second elements of all processes

etc.

3 / 8

Communication of the non-contiguous elements can be achieved using a
vector custom data type

Writing the non-contiguous elements to a binary �le in parallel using
MPI-I/O and �le views

The included plot.py takes care of reading from a binary �le but is
otherwise the same as before

Parallelization of PDEs
The heat equation program with parallelization over the -coordinate and MPI-I/O

Exercise l10/ex05 (or l11/ex02), with missing parts marked as TODOs

x

4 / 8

Parallelization of PDEs
��
 * TODO_1
 ��
#def�ne IDX(y, x)

5 / 8

Parallelization of PDEs
��
 * TODO_1
 ��
#def�ne IDX(y, x)

/***
 * Set the boundary condition for v[L*(lx+2)]
 ***/
void
boundary_condition(double �v)
{
 int size, rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 ��
 * TODO_2
 ��

 ��
 * Which rank has x �� 0?
 ��
 if(rank �� �� ��) {
 �� ��� ��
 }

 ��
 * Which rank has x �� L-1?
 ��
 if(rank �� �� ��) {
 �� ��� ��
 }

 ��
 * Set y = L/2 to 1
 ��
���

5 / 8

Parallelization of PDEs
/***
 * Update the boundary of v[L*(lx+2)], by exchanging "halos"
 ***/
void
update_boundary(double �v)
{
 int size, rank;
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 ��
 * TODO_3
 ��

 MPI_Datatype dtype;
 MPI_Type_vector(�� ��� ��);
 MPI_Type_commit(&dtype);

 �� Send x = 0 boundary to lx+1 of backward neighbor ��
 MPI_Sendrecv(�� ��� ��);

 �� Send x = lx-1 boundary to -1 of forward neighbor ��
 MPI_Sendrecv(�� ��� ��);
 ���

6 / 8

Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "�le view" and one for the "data view"

7 / 8

Parallelization of PDEs
MPI-I/O and combining two custom types

Use MPI-I/O to write the resulting array in parallel

Need two custom types: one for the "�le view" and one for the "data view"

7 / 8

Strong scaling of the MPI-parallelized heat equation solution

 Use at most two nodes, 32 processes per node

 Plot against inverse time-to-solution rather than speed-up

 Scale both parallelizations over and separately

 Include in the plot the scalar version of at

⇒

⇒

⇒ x y

⇒ = 1nproc

8 / 8

