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Strong scaling of the MPI-parallelized heat equation solution

 Use at most two nodes, 32 processes per node

 Plot against inverse time-to-solution rather than speed-up

 Scale both parallelizations over  and  separately

 Include in the plot the scalar version of at 

⇒

⇒

⇒ x y

⇒ = 1nproc
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par-x [s ] par-x [s] par-y [s ] par-y [s]
1 0.060 16.622 0.059 16.940
2 0.119 8.432 0.117 8.566
4 0.225 4.446 0.222 4.497
8 0.434 2.306 0.426 2.349

16 0.699 1.430 0.702 1.424
32 1.301 0.769 1.321 0.757
64 2.331 0.429 2.482 0.403

Scalar,  11.2 s   = 0.09 s

nMPI
−1 −1

t = ⇒t−1 −1
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Outline
A closer look at the heat-equation

Heat equation code

Scalar code

Add OpenMP

Implement a set of further optimization strategies

Parallel program using MPI

Start from optimized CPU code and implement MPI

Mix OpenMP and MPI

Evaluate impact of MPI
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Optimizing the heat equation code -- no MPI
ex01 implements the scalar heat equation
[ikoutsou@front02 SDS406]$ mkdir l12
[ikoutsou@front02 SDS406]$ cd l12
[ikoutsou@front02 SDS406]$ cp -r /onyx/data/sds406f24/l12/ex01 .
[ikoutsou@front02 SDS406]$ cd ex01/

Use module load gompi/2023a

Compile with -O3

Run with srun on the p100 partition. Use L=256, T=6000, alpha=0.2

Backup v.bin as a reference. We will be comparing outputs to it as we go along, checking our code as we optimize it.
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Optimizing the heat equation code -- no MPI
Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory
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Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory

Include the omp.h header file

Add pragma omp parallel for above the for-loops of the update() and boundary_condition() functions

Report the number of threads, floating-point performance, and sustained bandwidth

Add -fopenmp when compiling
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Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:
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∼
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Optimizing the heat equation code -- no MPI
Task B of ex01
In update(), we are allocating and freeing a temporary array in each call
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  /* Copy current field to temporary field */
  memcpy(v0, v, L*L*sizeof(double));

  ...

  /* Don't need temporary field any more */
  free(v0);
  return;
}

This may be suboptimal. Change update() to accept an input and output array v1 and v0:

void
update(double *v1, double *v0, double alpha)
{
#pragma omp parallel for
  for(int y=0; y<L; y++) 
    for(int x=0; x<L; x++) {
      ...
      v1[r00] = (1-4*alpha)*v0[r00] + ...;
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double *v[2] = {
  ualloc(sizeof(double)*L*L),
  ualloc(sizeof(double)*L*L)
};

2. Initialize the first one:

initial_condition(v[0]);

3. Alternate between them in the loop:

for(int i=0; i<T; i++) {
   update(v[(i + 1) % 2], v[i % 2], alpha);
   boundary_condition(v[(i + 1) % 2]);
}

4. The last iteration is i=T-1 and therefore the last update stores the result in v[(T-1+1) % 2] = v[T % 2], so:

write_bin("v.bin", v[T % 2]);
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Task C of ex01
Now let's reconsider the use of IDX()

While convenient in improving code readability, there are two issues that affect performance when using this macro:

The modulo operations may break the CPUs prefetcher

The number of modulo operations is quite large; larger than the number of floating point operations per iteration

1. We will break the x-loop; a main loop for the inner elements and then separate x=0 and x=L-1 cases

2. We will pre-compute repeated factors, like y*L, (y+1)*L, and (y-1)*L

Within boundary_condition()

#pragma omp parallel for  
  for(int y=0; y<L; y++) {
    v[y*L] = 1.0;
    v[y*L + L-1] = 1.0;
  }

#pragma omp parallel for  
  for(int x=0; x<L; x++) {
    v[L*(L/2) + x] = 1.0;
  }
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Loop for inner elements of x in update():

#pragma omp parallel for
  for(int y=0; y<L; y++) {
    int y0L = y*L;
    int ypL = ((y+1)%L)*L;
    int ymL = ((L+y-1)%L)*L;
    for(int x=1; x<L-1; x++) {
      int r00 = y0L + x;
      int r0p = y0L + x+1;
      int r0m = y0L + x-1;
      int rp0 = ypL + x;
      int rm0 = ymL + x;

      v1[r00] = (1-4*alpha)*v0[r00] + \
                alpha*(v0[rp0] + v0[rm0] + v0[r0p] + v0[r0m]);
    }

    /* Loop over `y' continued on the right ---> */

Parts for x=0 and x=L-1 done separately

    /* x = 0 */
    {
      int r00 = y0L;
      int r0p = y0L+1;
      int r0m = y0L+(L-1);
      int rp0 = ypL;
      int rm0 = ymL;

      v1[r00] = (1-4*alpha)*v0[r00] + \
                alpha*(v0[rp0] + v0[rm0] + v0[r0p] + v0[r0m]);
    }
    /* x = L-1 */
    {
      int r00 = y0L+(L-1);
      int r0p = y0L;
      int r0m = y0L+(L-2);
      int rp0 = ypL+(L-1);
      int rm0 = ymL+(L-1);

      v1[r00] = (1-4*alpha)*v0[r00] + \
                alpha*(v0[rp0] + v0[rm0] + v0[r0p] + v0[r0m]);
    }
  } /* <--- this bracket closes the `y'-loop */

Optimizing the heat equation code -- no MPI
Task C of ex01
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Optimizing the heat equation code -- no MPI
Task C of ex01
Compile and run using 16 OpenMP threads like before
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[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64  -p p100 ./heat 256 6000 0.2
 nthr =  16 | L = 256 | T = 6000 | t0 = 0.090990 sec | p = 2.593e+01 Gflop/s | b = 6.955e+01 GB/s

Check the result with cmp and the reference output file!

Compare ~70 GB/s to theoretical peak BW of ~80 GB/s
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In main():

double t0 = stop_watch(0);
#pragma omp parallel
for(int i=0; i<T; i++) {

In update():

#pragma omp for
for(int y=0; y<L; y++) {
int y0L = L*y;
...
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In update():

#pragma omp for
for(int y=0; y<L; y++) {
int y0L = L*y;
...

In boundary_condition():

#pragma omp for
  for(int y=0; y<L; y++) {
  ...

#pragma omp for
  for(int x=0; x<L; x++) {
  ...
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This is larger than our estimated peak, which means we are partially in cache

We will increase L to see when the bandwidth plateaus, indicating we are out of cache

For this benchmark, it helps to reduce T as we increase L so that the runtime doesn't explode
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Optimizing the heat equation code -- with MPI
As a general approach, we will add MPI parallelization along the -axis as we did in lesson 9

We would like to keep the non-MPI version. We will use #ifdef MPI ... #endif around the regions with MPI code

This allows us to switch on MPI at compile time, e.g.:

...

ly = L;

#ifdef MPI
int nproc;
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
ly = L/nproc;
#endif
...

y
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 MPI_Comm_size() will not be called and ly will be equal to L
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#endif
...

Compiling with cc -o heat heat.c will omit the code within ifdef
 MPI_Comm_size() will not be called and ly will be equal to L
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 MPI_Comm_size() will be called and ly will be equal to L/nproc

y

⇒

⇒

16 / 19

https://sds406.online/slides/l09.html#38


Optimizing the heat equation code -- with MPI
One thing to take care of is calling MPI functions within omp parallel regions
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Optimizing the heat equation code -- with MPI
One thing to take care of is calling MPI functions within omp parallel regions

Ensure only one OpenMP thread is calling MPI functions, e.g.:

#pragma omp single
    MPI_Sendrecv(...);
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Optimizing the heat equation code -- with MPI
One thing to take care of is calling MPI functions within omp parallel regions

Ensure only one OpenMP thread is calling MPI functions, e.g.:

#pragma omp single
    MPI_Sendrecv(...);

Another "trick" is to define nproc and rank and set them to nproc = 1 and rank = 0 outside the #ifdef MPI regions, so that the non-MPI code works when you
have if(rank == 0) and similar
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Running Hybrid MPI/OpenMP Code
Running this hybrid version needs some care. In general you need to ensure that:

An OpenMP thread is bound to a core

When using multiple OpenMP threads per MPI process, the mpirun command allocates multiple cores to each MPI process

Achieving this depends on the MPI implementation (e.g. OpenMPI, MVAPICH, IntelMPI, etc.)

Can be found looking at the manual pages or help output of the mpirun or mpiexec command
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Example for our specific use-case:

OMP_NUM_THREADS=16 mpirun -n 4 -npernode 2 --map-by slot:PE=16 ./heat 2048 100 0.2

Run using 4 MPI processes

mpirun is instructed to allocate 16 "slots" (here meaning cores) per MPI process

2 MPI processes will run on each physical node

Each MPI process will spawn 16 OpenMP threads within omp parallel regions
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An OpenMP thread is bound to a core

When using multiple OpenMP threads per MPI process, the mpirun command allocates multiple cores to each MPI process
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Can be found looking at the manual pages or help output of the mpirun or mpiexec command

Example for our specific use-case:

OMP_NUM_THREADS=16 mpirun -n 4 -npernode 2 --map-by slot:PE=16 ./heat 2048 100 0.2

Run using 4 MPI processes

mpirun is instructed to allocate 16 "slots" (here meaning cores) per MPI process

2 MPI processes will run on each physical node

Each MPI process will spawn 16 OpenMP threads within omp parallel regions

You can also use --report-bindings to see how each MPI process is bound

[cyc02:49468] MCW rank 1 bound to ... : [../../../../../../../../../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB]
[cyc02:49468] MCW rank 0 bound to ... : [BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../../../../../../../../../..]
[cyc03:49399] MCW rank 3 bound to ... : [../../../../../../../../../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB]
[cyc03:49399] MCW rank 2 bound to ... : [BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../../../../../../../../../..]

This report shows that for each MPI process, the 16 OpenMP threads are restricted to a different socket
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Scaling plot of two cases, L=256 (left) and L=2048

Can this behavior be interpreted?

L=256 fits in a single-socket's L3 cache

L=2048 does not, but 2048 x 1024 does

Average and error taken over 10 runs

Setup:

,
 single-socket is used

,
 1 node, 2 sockets

When ,
 2 nodes, 2 sockets/node

Running Hybrid MPI/OpenMP Code

× ≤ 16nOMP nMPI
⇒

× = 32nOMP nMPI
⇒

× = 64nOMP nMPI
⇒
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