
Introduction to High Performance Computing
\\

SDS406 – Fall semester, 2024 - 2025

\\

L12: Further Optimization Topics, 16 December 2024th

1 / 19

Strong scaling of the MPI-parallelized heat equation solution

 Use at most two nodes, 32 processes per node

 Plot against inverse time-to-solution rather than speed-up

 Scale both parallelizations over and separately

 Include in the plot the scalar version of at

⇒

⇒

⇒ x y

⇒ = 1nproc

2 / 19

par-x [s] par-x [s] par-y [s] par-y [s]
1 0.060 16.622 0.059 16.940
2 0.119 8.432 0.117 8.566
4 0.225 4.446 0.222 4.497
8 0.434 2.306 0.426 2.349

16 0.699 1.430 0.702 1.424
32 1.301 0.769 1.321 0.757
64 2.331 0.429 2.482 0.403

Scalar, 11.2 s = 0.09 s

nMPI
−1 −1

t = ⇒t−1 −1

3 / 19

Outline
A closer look at the heat-equation

Heat equation code

Scalar code

Add OpenMP

Implement a set of further optimization strategies

Parallel program using MPI

Start from optimized CPU code and implement MPI

Mix OpenMP and MPI

Evaluate impact of MPI

4 / 19

Optimizing the heat equation code -- no MPI
ex01 implements the scalar heat equation
[ikoutsou@front02 SDS406]$ mkdir l12
[ikoutsou@front02 SDS406]$ cd l12
[ikoutsou@front02 SDS406]$ cp -r /onyx/data/sds406f24/l12/ex01 .
[ikoutsou@front02 SDS406]$ cd ex01/

Use module load gompi/2023a

Compile with -O3

Run with srun on the p100 partition. Use L=256, T=6000, alpha=0.2

Backup v.bin as a reference. We will be comparing outputs to it as we go along, checking our code as we optimize it.

5 / 19

Optimizing the heat equation code -- no MPI
ex01 implements the scalar heat equation
[ikoutsou@front02 SDS406]$ mkdir l12
[ikoutsou@front02 SDS406]$ cd l12
[ikoutsou@front02 SDS406]$ cp -r /onyx/data/sds406f24/l12/ex01 .
[ikoutsou@front02 SDS406]$ cd ex01/

Use module load gompi/2023a

Compile with -O3

Run with srun on the p100 partition. Use L=256, T=6000, alpha=0.2

Backup v.bin as a reference. We will be comparing outputs to it as we go along, checking our code as we optimize it.

[ikoutsou@front02 ex01]$ module load gompi/2023a
[ikoutsou@front02 ex01]$ cc -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 -p p100 ./heat 256 6000 0.2
 L = 256 T = 6000 t0 = 8.849914 sec
[ikoutsou@front02 ex01]$ mv v.bin v-reference.bin

5 / 19

Optimizing the heat equation code -- no MPI
ex01 implements the scalar heat equation
[ikoutsou@front02 SDS406]$ mkdir l12
[ikoutsou@front02 SDS406]$ cd l12
[ikoutsou@front02 SDS406]$ cp -r /onyx/data/sds406f24/l12/ex01 .
[ikoutsou@front02 SDS406]$ cd ex01/

Use module load gompi/2023a

Compile with -O3

Run with srun on the p100 partition. Use L=256, T=6000, alpha=0.2

Backup v.bin as a reference. We will be comparing outputs to it as we go along, checking our code as we optimize it.

[ikoutsou@front02 ex01]$ module load gompi/2023a
[ikoutsou@front02 ex01]$ cc -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 -p p100 ./heat 256 6000 0.2
 L = 256 T = 6000 t0 = 8.849914 sec
[ikoutsou@front02 ex01]$ mv v.bin v-reference.bin

Note that this original version takes ~9 seconds

5 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory

6 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory

Include the omp.h header file

6 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory

Include the omp.h header file

Add pragma omp parallel for above the for-loops of the update() and boundary_condition() functions

6 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory

Include the omp.h header file

Add pragma omp parallel for above the for-loops of the update() and boundary_condition() functions

Report the number of threads, floating-point performance, and sustained bandwidth

6 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
In this part, we will enable OpenMP and report the sustained floating-point performance and bandwidth to memory

Include the omp.h header file

Add pragma omp parallel for above the for-loops of the update() and boundary_condition() functions

Report the number of threads, floating-point performance, and sustained bandwidth

Add -fopenmp when compiling

6 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:

7 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ OMP_NUM_THREADS=1 srun -n 1 -p p100 ./heat 256 6000 0.2
 nthr = 1 | L = 256 | T = 6000 | t0 = 8.633438 sec | p = 2.733e-01 Gflop/s | b = 7.330e-01 GB/s

7 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ OMP_NUM_THREADS=1 srun -n 1 -p p100 ./heat 256 6000 0.2
 nthr = 1 | L = 256 | T = 6000 | t0 = 8.633438 sec | p = 2.733e-01 Gflop/s | b = 7.330e-01 GB/s

Bandwidth is less than 1 GBytes/s, where peak is 80 GBytes/s, i.e. we are obtaining performance at less than 2% of peak.∼

7 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ OMP_NUM_THREADS=1 srun -n 1 -p p100 ./heat 256 6000 0.2
 nthr = 1 | L = 256 | T = 6000 | t0 = 8.633438 sec | p = 2.733e-01 Gflop/s | b = 7.330e-01 GB/s

Bandwidth is less than 1 GBytes/s, where peak is 80 GBytes/s, i.e. we are obtaining performance at less than 2% of peak.

Run with 16 OpenMP threads on a single socket:

∼

7 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ OMP_NUM_THREADS=1 srun -n 1 -p p100 ./heat 256 6000 0.2
 nthr = 1 | L = 256 | T = 6000 | t0 = 8.633438 sec | p = 2.733e-01 Gflop/s | b = 7.330e-01 GB/s

Bandwidth is less than 1 GBytes/s, where peak is 80 GBytes/s, i.e. we are obtaining performance at less than 2% of peak.

Run with 16 OpenMP threads on a single socket:

[ikoutsou@front02 ex01]$ export OMP_PROC_BIND=true
[ikoutsou@front02 ex01]$ export OMP_PLACES="{0}:16:1"
[ikoutsou@front02 ex01]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 1.152561 sec | p = 2.047e+00 Gflop/s | b = 5.491e+00 GB/s

∼

7 / 19

Optimizing the heat equation code -- no MPI
Task A of ex01
Compile and run with a single OpenMP thread:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ OMP_NUM_THREADS=1 srun -n 1 -p p100 ./heat 256 6000 0.2
 nthr = 1 | L = 256 | T = 6000 | t0 = 8.633438 sec | p = 2.733e-01 Gflop/s | b = 7.330e-01 GB/s

Bandwidth is less than 1 GBytes/s, where peak is 80 GBytes/s, i.e. we are obtaining performance at less than 2% of peak.

Run with 16 OpenMP threads on a single socket:

[ikoutsou@front02 ex01]$ export OMP_PROC_BIND=true
[ikoutsou@front02 ex01]$ export OMP_PLACES="{0}:16:1"
[ikoutsou@front02 ex01]$ export OMP_NUM_THREADS=16
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 1.152561 sec | p = 2.047e+00 Gflop/s | b = 5.491e+00 GB/s

This is ~6% of single-socket peak bandwidth. We will first optimize this CPU version before adding MPI

∼

7 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
In update(), we are allocating and freeing a temporary array in each call

8 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
In update(), we are allocating and freeing a temporary array in each call

void
update(double *v, double alpha)
{
 /* Allocate a temporary field */
 double *v0 = ualloc(sizeof(double)*L*L);

 /* Copy current field to temporary field */
 memcpy(v0, v, L*L*sizeof(double));

 ...

 /* Don't need temporary field any more */
 free(v0);
 return;
}

8 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
In update(), we are allocating and freeing a temporary array in each call

void
update(double *v, double alpha)
{
 /* Allocate a temporary field */
 double *v0 = ualloc(sizeof(double)*L*L);

 /* Copy current field to temporary field */
 memcpy(v0, v, L*L*sizeof(double));

 ...

 /* Don't need temporary field any more */
 free(v0);
 return;
}

This may be suboptimal. Change update() to accept an input and output array v1 and v0:

8 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
In update(), we are allocating and freeing a temporary array in each call

void
update(double *v, double alpha)
{
 /* Allocate a temporary field */
 double *v0 = ualloc(sizeof(double)*L*L);

 /* Copy current field to temporary field */
 memcpy(v0, v, L*L*sizeof(double));

 ...

 /* Don't need temporary field any more */
 free(v0);
 return;
}

This may be suboptimal. Change update() to accept an input and output array v1 and v0:

void
update(double *v1, double *v0, double alpha)
{
#pragma omp parallel for
 for(int y=0; y<L; y++)
 for(int x=0; x<L; x++) {
 ...
 v1[r00] = (1-4*alpha)*v0[r00] + ...;

8 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
We now need to allocate two arrays in the main program, and call update() alternating between input and output

9 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
We now need to allocate two arrays in the main program, and call update() alternating between input and output

One way to do this:

1. Allocate a two-component array of arrays:

double *v[2] = {
 ualloc(sizeof(double)*L*L),
 ualloc(sizeof(double)*L*L)
};

9 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
We now need to allocate two arrays in the main program, and call update() alternating between input and output

One way to do this:

1. Allocate a two-component array of arrays:

double *v[2] = {
 ualloc(sizeof(double)*L*L),
 ualloc(sizeof(double)*L*L)
};

2. Initialize the first one:

initial_condition(v[0]);

9 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
We now need to allocate two arrays in the main program, and call update() alternating between input and output

One way to do this:

1. Allocate a two-component array of arrays:

double *v[2] = {
 ualloc(sizeof(double)*L*L),
 ualloc(sizeof(double)*L*L)
};

2. Initialize the first one:

initial_condition(v[0]);

3. Alternate between them in the loop:

for(int i=0; i<T; i++) {
 update(v[(i + 1) % 2], v[i % 2], alpha);
 boundary_condition(v[(i + 1) % 2]);
}

9 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
We now need to allocate two arrays in the main program, and call update() alternating between input and output

One way to do this:

1. Allocate a two-component array of arrays:

double *v[2] = {
 ualloc(sizeof(double)*L*L),
 ualloc(sizeof(double)*L*L)
};

2. Initialize the first one:

initial_condition(v[0]);

3. Alternate between them in the loop:

for(int i=0; i<T; i++) {
 update(v[(i + 1) % 2], v[i % 2], alpha);
 boundary_condition(v[(i + 1) % 2]);
}

4. The last iteration is i=T-1 and therefore the last update stores the result in v[(T-1+1) % 2] = v[T % 2], so:

write_bin("v.bin", v[T % 2]);

9 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
Remember to free both at the end:

 free(v[0]);
 free(v[1]);

10 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
Remember to free both at the end:

 free(v[0]);
 free(v[1]);

Compile and run using 16 OpenMP threads like the last time:

10 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
Remember to free both at the end:

 free(v[0]);
 free(v[1]);

Compile and run using 16 OpenMP threads like the last time:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.739561 sec | p = 3.190e+00 Gflop/s | b = 8.557e+00 GB/s

10 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
Remember to free both at the end:

 free(v[0]);
 free(v[1]);

Compile and run using 16 OpenMP threads like the last time:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.739561 sec | p = 3.190e+00 Gflop/s | b = 8.557e+00 GB/s

We're closer to ~10% of peak. Better, but still some improvement to be gained

10 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
Remember to free both at the end:

 free(v[0]);
 free(v[1]);

Compile and run using 16 OpenMP threads like the last time:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.739561 sec | p = 3.190e+00 Gflop/s | b = 8.557e+00 GB/s

We're closer to ~10% of peak. Better, but still some improvement to be gained

Now may be a good time to check our result:

[ikoutsou@front02 ex01]$ cmp v.bin v-reference.bin
[ikoutsou@front02 ex01]$

10 / 19

Optimizing the heat equation code -- no MPI
Task B of ex01
Remember to free both at the end:

 free(v[0]);
 free(v[1]);

Compile and run using 16 OpenMP threads like the last time:

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.739561 sec | p = 3.190e+00 Gflop/s | b = 8.557e+00 GB/s

We're closer to ~10% of peak. Better, but still some improvement to be gained

Now may be a good time to check our result:

[ikoutsou@front02 ex01]$ cmp v.bin v-reference.bin
[ikoutsou@front02 ex01]$

No output means the two files are bit-identical

10 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Now let's reconsider the use of IDX()

11 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Now let's reconsider the use of IDX()

While convenient in improving code readability, there are two issues that affect performance when using this macro:

11 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Now let's reconsider the use of IDX()

While convenient in improving code readability, there are two issues that affect performance when using this macro:

The modulo operations may break the CPUs prefetcher

11 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Now let's reconsider the use of IDX()

While convenient in improving code readability, there are two issues that affect performance when using this macro:

The modulo operations may break the CPUs prefetcher

The number of modulo operations is quite large; larger than the number of floating point operations per iteration

11 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Now let's reconsider the use of IDX()

While convenient in improving code readability, there are two issues that affect performance when using this macro:

The modulo operations may break the CPUs prefetcher

The number of modulo operations is quite large; larger than the number of floating point operations per iteration

1. We will break the x-loop; a main loop for the inner elements and then separate x=0 and x=L-1 cases

2. We will pre-compute repeated factors, like y*L, (y+1)*L, and (y-1)*L

11 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Now let's reconsider the use of IDX()

While convenient in improving code readability, there are two issues that affect performance when using this macro:

The modulo operations may break the CPUs prefetcher

The number of modulo operations is quite large; larger than the number of floating point operations per iteration

1. We will break the x-loop; a main loop for the inner elements and then separate x=0 and x=L-1 cases

2. We will pre-compute repeated factors, like y*L, (y+1)*L, and (y-1)*L

Within boundary_condition()

#pragma omp parallel for
 for(int y=0; y<L; y++) {
 v[y*L] = 1.0;
 v[y*L + L-1] = 1.0;
 }

#pragma omp parallel for
 for(int x=0; x<L; x++) {
 v[L*(L/2) + x] = 1.0;
 }

11 / 19

Loop for inner elements of x in update():

#pragma omp parallel for
 for(int y=0; y<L; y++) {
 int y0L = y*L;
 int ypL = ((y+1)%L)*L;
 int ymL = ((L+y-1)%L)*L;
 for(int x=1; x<L-1; x++) {
 int r00 = y0L + x;
 int r0p = y0L + x+1;
 int r0m = y0L + x-1;
 int rp0 = ypL + x;
 int rm0 = ymL + x;

 v1[r00] = (1-4*alpha)*v0[r00] + \
 alpha*(v0[rp0] + v0[rm0] + v0[r0p] + v0[r0m]);
 }

 /* Loop over `y' continued on the right ---> */

Parts for x=0 and x=L-1 done separately

 /* x = 0 */
 {
 int r00 = y0L;
 int r0p = y0L+1;
 int r0m = y0L+(L-1);
 int rp0 = ypL;
 int rm0 = ymL;

 v1[r00] = (1-4*alpha)*v0[r00] + \
 alpha*(v0[rp0] + v0[rm0] + v0[r0p] + v0[r0m]);
 }
 /* x = L-1 */
 {
 int r00 = y0L+(L-1);
 int r0p = y0L;
 int r0m = y0L+(L-2);
 int rp0 = ypL+(L-1);
 int rm0 = ymL+(L-1);

 v1[r00] = (1-4*alpha)*v0[r00] + \
 alpha*(v0[rp0] + v0[rm0] + v0[r0p] + v0[r0m]);
 }
 } /* <--- this bracket closes the `y'-loop */

Optimizing the heat equation code -- no MPI
Task C of ex01

12 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Compile and run using 16 OpenMP threads like before

13 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Compile and run using 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.090990 sec | p = 2.593e+01 Gflop/s | b = 6.955e+01 GB/s

13 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Compile and run using 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.090990 sec | p = 2.593e+01 Gflop/s | b = 6.955e+01 GB/s

Check the result with cmp and the reference output file!

13 / 19

Optimizing the heat equation code -- no MPI
Task C of ex01
Compile and run using 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.090990 sec | p = 2.593e+01 Gflop/s | b = 6.955e+01 GB/s

Check the result with cmp and the reference output file!

Compare ~70 GB/s to theoretical peak BW of ~80 GB/s

13 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
The final optimization will be to avoid forking and joining the OpenMP threads in each iteration.

14 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
The final optimization will be to avoid forking and joining the OpenMP threads in each iteration.

Use #pragma omp parallel before the T-loop in the main program

14 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
The final optimization will be to avoid forking and joining the OpenMP threads in each iteration.

Use #pragma omp parallel before the T-loop in the main program

Use #praga omp for above the for-loops

14 / 19

In main():

double t0 = stop_watch(0);
#pragma omp parallel
for(int i=0; i<T; i++) {

In update():

#pragma omp for
for(int y=0; y<L; y++) {
int y0L = L*y;
...

Optimizing the heat equation code -- no MPI
Task D of ex01
The final optimization will be to avoid forking and joining the OpenMP threads in each iteration.

Use #pragma omp parallel before the T-loop in the main program

Use #praga omp for above the for-loops

14 / 19

In main():

double t0 = stop_watch(0);
#pragma omp parallel
for(int i=0; i<T; i++) {

In update():

#pragma omp for
for(int y=0; y<L; y++) {
int y0L = L*y;
...

In boundary_condition():

#pragma omp for
 for(int y=0; y<L; y++) {
 ...

#pragma omp for
 for(int x=0; x<L; x++) {
 ...

Optimizing the heat equation code -- no MPI
Task D of ex01
The final optimization will be to avoid forking and joining the OpenMP threads in each iteration.

Use #pragma omp parallel before the T-loop in the main program

Use #praga omp for above the for-loops

14 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

15 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

This is larger than our estimated peak, which means we are partially in cache

15 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

This is larger than our estimated peak, which means we are partially in cache

We will increase L to see when the bandwidth plateaus, indicating we are out of cache

15 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

This is larger than our estimated peak, which means we are partially in cache

We will increase L to see when the bandwidth plateaus, indicating we are out of cache

For this benchmark, it helps to reduce T as we increase L so that the runtime doesn't explode

15 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

This is larger than our estimated peak, which means we are partially in cache

We will increase L to see when the bandwidth plateaus, indicating we are out of cache

For this benchmark, it helps to reduce T as we increase L so that the runtime doesn't explode

[ikoutsou@front02 ex01]$ for((i=1; i<=128; i*=2))
> do srun -n 1 -p p100 --cpus-per-task=64 ./heat $((i*128)) $((64*16384/i/i)) 0.2
> done
 nthr = 16 | L = 128 | T = 1048576 | t0 = 7.855353 sec | p = 1.312e+01 Gflop/s | b = 3.540e+01 GB/s
 nthr = 16 | L = 256 | T = 262144 | t0 = 2.018945 sec | p = 5.106e+01 Gflop/s | b = 1.369e+02 GB/s
 nthr = 16 | L = 512 | T = 65536 | t0 = 1.296302 sec | p = 7.952e+01 Gflop/s | b = 2.127e+02 GB/s
 nthr = 16 | L = 1024 | T = 16384 | t0 = 1.107996 sec | p = 9.303e+01 Gflop/s | b = 2.484e+02 GB/s
 nthr = 16 | L = 2048 | T = 4096 | t0 = 5.515507 sec | p = 1.869e+01 Gflop/s | b = 4.987e+01 GB/s
 nthr = 16 | L = 4096 | T = 1024 | t0 = 6.591526 sec | p = 1.564e+01 Gflop/s | b = 4.172e+01 GB/s
 nthr = 16 | L = 8192 | T = 256 | t0 = 6.398171 sec | p = 1.611e+01 Gflop/s | b = 4.297e+01 GB/s
 nthr = 16 | L = 16384 | T = 64 | t0 = 6.227907 sec | p = 1.655e+01 Gflop/s | b = 4.414e+01 GB/s

15 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

This is larger than our estimated peak, which means we are partially in cache

We will increase L to see when the bandwidth plateaus, indicating we are out of cache

For this benchmark, it helps to reduce T as we increase L so that the runtime doesn't explode

[ikoutsou@front02 ex01]$ for((i=1; i<=128; i*=2))
> do srun -n 1 -p p100 --cpus-per-task=64 ./heat $((i*128)) $((64*16384/i/i)) 0.2
> done
 nthr = 16 | L = 128 | T = 1048576 | t0 = 7.855353 sec | p = 1.312e+01 Gflop/s | b = 3.540e+01 GB/s
 nthr = 16 | L = 256 | T = 262144 | t0 = 2.018945 sec | p = 5.106e+01 Gflop/s | b = 1.369e+02 GB/s
 nthr = 16 | L = 512 | T = 65536 | t0 = 1.296302 sec | p = 7.952e+01 Gflop/s | b = 2.127e+02 GB/s
 nthr = 16 | L = 1024 | T = 16384 | t0 = 1.107996 sec | p = 9.303e+01 Gflop/s | b = 2.484e+02 GB/s
 nthr = 16 | L = 2048 | T = 4096 | t0 = 5.515507 sec | p = 1.869e+01 Gflop/s | b = 4.987e+01 GB/s
 nthr = 16 | L = 4096 | T = 1024 | t0 = 6.591526 sec | p = 1.564e+01 Gflop/s | b = 4.172e+01 GB/s
 nthr = 16 | L = 8192 | T = 256 | t0 = 6.398171 sec | p = 1.611e+01 Gflop/s | b = 4.297e+01 GB/s
 nthr = 16 | L = 16384 | T = 64 | t0 = 6.227907 sec | p = 1.655e+01 Gflop/s | b = 4.414e+01 GB/s

Plateaus at ~45 GB/s or ~60% of peak bandwidth

15 / 19

Optimizing the heat equation code -- no MPI
Task D of ex01
Compile and run with 16 OpenMP threads like before

[ikoutsou@front02 ex01]$ cc -fopenmp -O3 -o heat heat.c
[ikoutsou@front02 ex01]$ srun -n 1 --cpus-per-task=64 -p p100 ./heat 256 6000 0.2
 nthr = 16 | L = 256 | T = 6000 | t0 = 0.046399 sec | p = 5.085e+01 Gflop/s | b = 1.364e+02 GB/s

This is larger than our estimated peak, which means we are partially in cache

We will increase L to see when the bandwidth plateaus, indicating we are out of cache

For this benchmark, it helps to reduce T as we increase L so that the runtime doesn't explode

[ikoutsou@front02 ex01]$ for((i=1; i<=128; i*=2))
> do srun -n 1 -p p100 --cpus-per-task=64 ./heat $((i*128)) $((64*16384/i/i)) 0.2
> done
 nthr = 16 | L = 128 | T = 1048576 | t0 = 7.855353 sec | p = 1.312e+01 Gflop/s | b = 3.540e+01 GB/s
 nthr = 16 | L = 256 | T = 262144 | t0 = 2.018945 sec | p = 5.106e+01 Gflop/s | b = 1.369e+02 GB/s
 nthr = 16 | L = 512 | T = 65536 | t0 = 1.296302 sec | p = 7.952e+01 Gflop/s | b = 2.127e+02 GB/s
 nthr = 16 | L = 1024 | T = 16384 | t0 = 1.107996 sec | p = 9.303e+01 Gflop/s | b = 2.484e+02 GB/s
 nthr = 16 | L = 2048 | T = 4096 | t0 = 5.515507 sec | p = 1.869e+01 Gflop/s | b = 4.987e+01 GB/s
 nthr = 16 | L = 4096 | T = 1024 | t0 = 6.591526 sec | p = 1.564e+01 Gflop/s | b = 4.172e+01 GB/s
 nthr = 16 | L = 8192 | T = 256 | t0 = 6.398171 sec | p = 1.611e+01 Gflop/s | b = 4.297e+01 GB/s
 nthr = 16 | L = 16384 | T = 64 | t0 = 6.227907 sec | p = 1.655e+01 Gflop/s | b = 4.414e+01 GB/s

Plateaus at ~45 GB/s or ~60% of peak bandwidth

Cache size is 20 MB can fit two arrays of , but not ⇒ 1024 × 1024 2048 × 2048

15 / 19

Optimizing the heat equation code -- with MPI
As a general approach, we will add MPI parallelization along the -axis as we did in lesson 9

We would like to keep the non-MPI version. We will use #ifdef MPI ... #endif around the regions with MPI code

This allows us to switch on MPI at compile time, e.g.:

...

ly = L;

#ifdef MPI
int nproc;
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
ly = L/nproc;
#endif
...

y

16 / 19

https://sds406.online/slides/l09.html#38

Optimizing the heat equation code -- with MPI
As a general approach, we will add MPI parallelization along the -axis as we did in lesson 9

We would like to keep the non-MPI version. We will use #ifdef MPI ... #endif around the regions with MPI code

This allows us to switch on MPI at compile time, e.g.:

...

ly = L;

#ifdef MPI
int nproc;
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
ly = L/nproc;
#endif
...

Compiling with cc -o heat heat.c will omit the code within ifdef
 MPI_Comm_size() will not be called and ly will be equal to L

y

⇒

16 / 19

https://sds406.online/slides/l09.html#38

Optimizing the heat equation code -- with MPI
As a general approach, we will add MPI parallelization along the -axis as we did in lesson 9

We would like to keep the non-MPI version. We will use #ifdef MPI ... #endif around the regions with MPI code

This allows us to switch on MPI at compile time, e.g.:

...

ly = L;

#ifdef MPI
int nproc;
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
ly = L/nproc;
#endif
...

Compiling with cc -o heat heat.c will omit the code within ifdef
 MPI_Comm_size() will not be called and ly will be equal to L

Compiling with mpicc -DMPI -o heat heat.c will include the code within ifdef
 MPI_Comm_size() will be called and ly will be equal to L/nproc

y

⇒

⇒

16 / 19

https://sds406.online/slides/l09.html#38

Optimizing the heat equation code -- with MPI
One thing to take care of is calling MPI functions within omp parallel regions

17 / 19

Optimizing the heat equation code -- with MPI
One thing to take care of is calling MPI functions within omp parallel regions

Ensure only one OpenMP thread is calling MPI functions, e.g.:

#pragma omp single
 MPI_Sendrecv(...);

17 / 19

Optimizing the heat equation code -- with MPI
One thing to take care of is calling MPI functions within omp parallel regions

Ensure only one OpenMP thread is calling MPI functions, e.g.:

#pragma omp single
 MPI_Sendrecv(...);

Another "trick" is to define nproc and rank and set them to nproc = 1 and rank = 0 outside the #ifdef MPI regions, so that the non-MPI code works when you
have if(rank == 0) and similar

17 / 19

Running Hybrid MPI/OpenMP Code
Running this hybrid version needs some care. In general you need to ensure that:

An OpenMP thread is bound to a core

When using multiple OpenMP threads per MPI process, the mpirun command allocates multiple cores to each MPI process

Achieving this depends on the MPI implementation (e.g. OpenMPI, MVAPICH, IntelMPI, etc.)

Can be found looking at the manual pages or help output of the mpirun or mpiexec command

18 / 19

Running Hybrid MPI/OpenMP Code
Running this hybrid version needs some care. In general you need to ensure that:

An OpenMP thread is bound to a core

When using multiple OpenMP threads per MPI process, the mpirun command allocates multiple cores to each MPI process

Achieving this depends on the MPI implementation (e.g. OpenMPI, MVAPICH, IntelMPI, etc.)

Can be found looking at the manual pages or help output of the mpirun or mpiexec command

Example for our specific use-case:

OMP_NUM_THREADS=16 mpirun -n 4 -npernode 2 --map-by slot:PE=16 ./heat 2048 100 0.2

Run using 4 MPI processes

mpirun is instructed to allocate 16 "slots" (here meaning cores) per MPI process

2 MPI processes will run on each physical node

Each MPI process will spawn 16 OpenMP threads within omp parallel regions

18 / 19

Running Hybrid MPI/OpenMP Code
Running this hybrid version needs some care. In general you need to ensure that:

An OpenMP thread is bound to a core

When using multiple OpenMP threads per MPI process, the mpirun command allocates multiple cores to each MPI process

Achieving this depends on the MPI implementation (e.g. OpenMPI, MVAPICH, IntelMPI, etc.)

Can be found looking at the manual pages or help output of the mpirun or mpiexec command

Example for our specific use-case:

OMP_NUM_THREADS=16 mpirun -n 4 -npernode 2 --map-by slot:PE=16 ./heat 2048 100 0.2

Run using 4 MPI processes

mpirun is instructed to allocate 16 "slots" (here meaning cores) per MPI process

2 MPI processes will run on each physical node

Each MPI process will spawn 16 OpenMP threads within omp parallel regions

You can also use --report-bindings to see how each MPI process is bound

[cyc02:49468] MCW rank 1 bound to ... : [../../../../../../../../../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB]
[cyc02:49468] MCW rank 0 bound to ... : [BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../../../../../../../../../..]
[cyc03:49399] MCW rank 3 bound to ... : [../../../../../../../../../../../../../../../..][BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB]
[cyc03:49399] MCW rank 2 bound to ... : [BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB/BB][../../../../../../../../../../../../../../../..]

This report shows that for each MPI process, the 16 OpenMP threads are restricted to a different socket

18 / 19

Scaling plot of two cases, L=256 (left) and L=2048

Can this behavior be interpreted?

L=256 fits in a single-socket's L3 cache

L=2048 does not, but 2048 x 1024 does

Average and error taken over 10 runs

Setup:

,
 single-socket is used

,
 1 node, 2 sockets

When ,
 2 nodes, 2 sockets/node

Running Hybrid MPI/OpenMP Code

× ≤ 16nOMP nMPI
⇒

× = 32nOMP nMPI
⇒

× = 64nOMP nMPI
⇒

19 / 19

